JOURNEY II UK Hero 1.png

Continuing a winning legacy in partial knee replacement

Every patient deserves a knee that feels normal. Based on the principle that unicompartmental knee arthroplasty (UKA) treats only the affected part of the knee and allows patients to retain healthy ligaments, the JOURNEY II UK System combines clinically successful features and advanced bearing technology in a solution backed by clinical data1,2 and has been shown to deliver improvements in KOOS JR scores.*1

  • Promotes intra-operative sizing flexibility through a range of peg positions and size groupings, with patella-friendly contours designed to maximise freedom in implant positioning3
  • Optimised for conventional instrumentation and compatible with a robotics-assisted approach using the CORI Surgical System
  • When used with the CORI System, surgeons can use the first digital tensioning device to assess joint laxity in the native knee before performing bony resection: the CORI Digital Tensioner4,5

Product Features

Surgical Techniques

Medical Education

No results

Disclaimer

*Compared to previous JOURNEY II partial knee system designs.

This design rationale is for informational and educational purposes only. It is not intended to serve as medical advice. It is the responsibility of treating physicians to determine and utilize the appropriate products and techniques according to their own clinical judgment for each of their patients.

For detailed product information, including indications for use, contraindications, effects, precautions and warnings, please consult the product’s Instructions for Use (IFU) prior to use.

Citations
  1. Fricka KB, et al. Cureus. 2024;16(11):e74596.
  2. D'Amario F, et al. J Clin Med. 2024 Feb 25;13(5):1303.
  3. Smith+Nephew 2021. Internal Report. TM-21-193.
  4. Smith+Nephew 2022. Internal Report. 10059269.
  5. Smith+Nephew 2022. Internal Report. TR100123.
  6. Scott RD, et al. Elsevier Health Sciences; 2022:25–28.
  7. Wilson HA, et al: BMJ. 2019;364:l352.
  8. Hauer G, et al. Arch Orthop Trauma Surg. 2020;140(2):231–237.
  9. Siman H, et al. J Arthroplasty. 2017;32(6):1792–1797.
  10. Geller JA, et al. J Arthroplasty. 2011;26(8):1468– 1474.
  11. Schwab P, et al. Knee Surg Sports Traumatol Arthrosc. 2015;23(12):3494–3500.
  12. Smith PN, et al. Hip, Knee and Shoulder Arthroplasty: 2023 Annual Report, Australian Orthopaedic Association National Joint Replacement Registry, AOA: Adelaide, South Australia. 2023.
    https://doi.org/10.25310/YWQZ9375.
  13. Kalbian, I, et al. Bone and Joint Journal. 2019;101B(7 Supple C):22–27.
  14. Liddle AD, et al. Lancet. 2014;384(9952):1437–1455.
  15. Herry Y, et al. Int Orthop. 2017;41:2265–2271.
  16. Bollars P, et al. Eur J Orthop Surg Traumatol, 2020;30: 723-729.
  17. Sun Y, et al. BMJ Open. 2021;11(8).
  18. Crizer MP, et al. Adv Orthop. 2021;1–8.
  19. Ghazal AH, et al. Cureus. 2023; 15(10).
  20. Yeroushalmi D et al. KJ Knee Surg, 2022;35(1):39-46.
  21. Wills-Owen CA, et al. Knee. 2009;16(6):473–478.
  22. Negrin R, et al. J Exp Orthop. 2020;7(1):94.
  23. O’Neill CN, et al. J Arthroplasty, 2022; 37(10): 2014-2019.
  24. Maman D, et al. J Clin Med. 2024;13(13): 3888.
  25. Pongcharoen B, et al. J Bone Joint Surg Am. 2023 Feb 1;105(3):191-201.
  26. Strickland LH, et al. J Arthroplasty. 2021 Oct;36(10):3413-3420.
  27. Wang H, et al. International Journal of Surgery: Global Health 4(2):p e51, March 2021.
  28. Ashok Kumar PS, et al. J Robot Surg. 2024;18(1):49.
  29. Negrin R, et al. Knee Surg Relat Res. 2021;33(1):5.
  30. Canetti R, et al. Arch Orthop Trauma Surg. 2018;138:1765–1771.
  31. Mergenthaler G, et al. Knee Surg Sports Traumatol Arthrosc. 2021;29:931–938.2023.
  32. Smith+Nephew 2019. Internal Report. DD0066.
  33. Long M, et al. Abstract presented at: 24th Annual Meeting of the Society for Biomaterial. April 22-26, 1998, San Diego, California.
  34. Parikh A, et al. Poster presented at: 55th Annual Meeting of the Orthopaedic Research Society, 2009. Poster no. 2340.
  35. Parikh A, et al. Poster presented at: 2013 Annual Meeting of the Orthopaedic Research Society. Poster no. 1028.
  36. Papannagari R, et al. Poster presented at: 2011 Annual Meeting of the Orthopaedic Research Society. Poster no. 1141.
  37. Smith+Nephew 2010. Internal Report. OR-10-155.
  38. Aldinger P, et al. Poster presented at: 2017 Annual Meeting of the Orthopaedic Research Society. Poster no. 1037.
  39. Smith+Nephew 2016. Internal Report. OR-16-127.
  40. Dalal A, et al. J Biomed Mater Res Part A. 2012;100A:2147-2158.
  41. ASTM International Standard Specification for Wrought Zirconium-2.5 Niobium Alloy for Surgical Implant Applications (UNS R60901) Designation: F 2384 – 10.
  42. ASTM International Standard Specification for Cobalt-28 Chromium-6 Molybdenum Alloy Castings and Casting Alloy for Surgical Implants (UNS R30075): Designation: F 75 – 12.

Title

Text