Why continue to fight the forces of your proximal third tibia fractures?
Challenges with tibial nailing

Malalignment\(^1\)

- **58%**
- **7%**
- **8%**

<table>
<thead>
<tr>
<th>Proximal third</th>
<th>Middle third</th>
<th>Distal third</th>
</tr>
</thead>
</table>

133 tibia nailing cases showed 58% of proximal tibia fractures were malaligned (≥5° angulation)\(^1\)

Challenges with malunions

Malunion has the potential to alter the contact areas in the adjacent knee and ankle joint, increasing the risk of cartilage degeneration and degenerative joint disease.\(^2,3\)

Solution

Nailing in semi-extension: Utilizing the semi-extended approach leads to less pull from the quadriceps muscle, helping to avoid fracture malreductions and malalignment.\(^2,3\)
Easy alignment

When dealing with proximal tibia fractures, a common issue is forced angulation. The semi-extended position allows for neutralization of the pulling forces of the quadriceps tendon.\(^2\)

Without these pulling forces the fracture **naturally reduces**, leading to **less malalignment**.\(^2\)

Simplified procedure

Simple C-Arm alignment for M/L and A/P views due to leg position.

Leg positioning does not need to change for freehand distal locking.

Easy reaming and guide wire placement since they do not have to be raised in the air over hyper-flexed knee.

There is no need for triangles or other aids to force the position of the leg.

In the semi-extended position only **bumps are needed for the procedure**.
Enhanced fixation

Threaded holes combined with a multiplanar screw configuration offer a stable, locked construct.

Up to 7mm of active compression possible through proximal dynamization slot.

Proximally located 10° Herzog Bend eases implant insertion and minimizes fracture displacement during implantation.

References