Final Trial
Reduction and
Component
Implantation of
TC
The TC-PLUS PRIMARY surgical procedure is followed to the point of proximal tibial resection.

This Surgical Technique should be used in conjunction with the TC-PLUS PRIMARY Femur-First procedure (Lit. No. 1701).

For preoperative planning there are also x-ray templates available (Lit. No. 1729/1730 and 1731/1732).

Table of Contents

Surgical Procedure ... 2
Postoperative Treatment ... 12
Sterilization .. 12

Nota Bene

The technique description herein is made available to the healthcare professional to illustrate the authors’ suggested treatment for the uncomplicated procedure. In the final analysis, the preferred treatment is that which addresses the needs of the patient.
Implant flexibility offers the opportunity to switch from a cruciate retaining prosthesis (TC CR) to a cruciate substituting (TC CS) or posterior stabilized (TC PS) prosthesis.

For cases in which the posterior cruciate ligament is totally insufficient or if it is sacrificed during the operation, e.g. with flexion contractures over 30°, there is a threat of dorsal instability in the flexed position. A cruciate substituting (deep dished) or posterior stabilized tibial insert for cemented implantation is available to address this kind of insufficiency.

The TC PS option includes a femoral component that incorporates a box in the area of the intercondylar notch into which a tibial insert with a raised peg engages. The peg’s limit stop can compensate for threatened dorsal translation. The same tibial component is used as for the TC CR and TC CS option.
1.1 Flexion and extension gaps

The flexion gap (90°) and extension gap (0°) may be assessed using the modular spacer blocks. A set of modular spacer blocks measures the gap and indicates the appropriate thickness of the tibial insert, subject to re-evaluation at trial reduction.

Check alignment and balance with spacer block and alignment rod through the tibial handle in flexion and extension. Balance ligaments in standard fashion.
1.2 Removal of any residual peripheral osteophytes

Use the curved osteotome to remove all osteophytes on the residual posterior condyles. At this time, a posterior contracture can also be released. This will improve flexion and prevent possible damage of the polyethylene insert by these bony projections.

The femoral trial is used as a reference for the removal of any residual posterior condyles with the curved osteotome.

This step is especially important for the posterior stabilized version.

1.3 Tibial sizing

Maximally flex the knee and place a thin bent Hohmann laterally and medially. The tibia is subluxed anteriorly with a tibial retractor.

Insert the tibial sizing template together with the attached tibial handle. Tibial sizing templates are available in all sizes for left and right knee.

The appropriate tibial size is determined. The tibial sizing template is selected which provides the greatest coverage of the prepared surface without overhang anterior to the mid-coronal plane.
1.4 Final tibial preparation

The attached tibial handle aligns with the anterior aspect of the tibia. Rotate the tibial sizing template so that the handle points at, or slightly medial to, the tibial tubercle. The axial alignment rod can be used to aid in double-checking varus/valgus alignment. Use short bone pins with head to secure the tibial sizing template.

Position the tibial sizing template with the tibial insert trial and the femoral trial. Ensure soft-tissue balance is appropriate.

Perform a trial range of motion to check the mobility, implant fit and joint stability of the knee joint.

With the tibial handle attached to the tibial sizing template, take the knee into full extension. Pass the axial alignment rod through the tibial handle to assess full leg alignment.

Note

For unilateral contractures, adequate soft-tissue release on the side of the contraction is recommended. If the knee cannot be fully extended, check whether a dorsal soft-tissue release is feasible. A second resection of femur should only be performed in exceptional cases.
1.5 Final femoral preparation

A) Cruciate retaining (CR) and cruciate substituting (CS) procedure

The femoral trial should be aligned medio-laterally in accordance with the anatomy to maximize patellar tracking.

Drill for the femoral anchorage pegs through the femoral trial using the appropriate femoral drill with stop.

Prepare the trochlear fossa with the trochlear chisel. Use the femoral bolts to keep the femoral trial in a stable position.

Verify the function of the patella and confirm that it tracks accordingly. If it has a tendency to dislocate, a lateral release might be necessary.

Note
At this stage it should be decided if a patellar resurfacing is required.
1.5 Final femoral preparation

B) Posterior stabilized (PS) procedure

The TC PS instrument trays are used. A box saw guide and the femoral box chisel are needed to prepare the femoral box.

Following the A/P and chamfer resections, place the size-matched box saw guide onto the distal end of the femur and secure with retaining pins. Prepare the box using the oscillating saw and precisely chisel out its proximal border using the femoral box chisel. The ground side should face distally (see marking).

PS femoral and tibial insert trials are available for trial insertion.

1.6 Preparation of tibial anchorage

Remove the femoral trial together with the femoral bolts as well as the tibial insert trial.

Ream the tibial canal using the tibial stem drill.

Center the appropriate tibial rasp and knock in completely. If the tibial component is to be anchored without cement, using cancellous bone screws, the site is prepared for the screws only after insertion of the final implant.

Remove the bone pins with head and tibial sizing template by using the pin extractor or slap hammer.
2. Patellar Preparation

The patellar instruments permit the use of the “onlay” technique in which 10 mm of the bone are resected and resurfaced by a 10 mm patellar component height. If an 8 mm patellar component height is planned, just resect 8 mm accordingly.

An alternative option is the “inlay” technique, in which the implant is partially countersunk (3 to 5 mm). In this case the patella is only resected approx. 5 to 7 mm below the ridge.

The thickness of the residual bony patella should not be less than 12 mm.

2.1 Patellar resection

After positioning the patellar clamp grasp the patella with the clamp. Turn the knob in a clockwise direction to tighten the clamp. Fix the clamp by depressing and turning the knob on the top side of the clamp in a clockwise direction.

Measure the patella thickness with the thickness indicator. The patellar thickness can be read from the millimeter scale on the handle.

Adjust the patellar resection level to the desired height by turning the smaller knob on top of the resection guide on the distal end of the patellar clamp.

Note

Ensure that the saw blade does not drift e.g. due to sclerotic bone sectors during the resection.

2.2 Patellar sizing

Determine the diameter of the appropriate patellar size using the patellar sizer.

Note

The patellar component is implanted with a slight medial offset, thus matching the position of the natural patellar ridge. Small implant sizes are recommended for small patellae to enable the required offset.
2.3 Milling

Mount the patellar bushing onto the patellar clamp with ratchet.

Select the patellar reamer to match the corresponding patella size. Depending on the selected anchoring technique, mill briefly (onlay technique) or countersink by 3 to 5 mm (inlay technique). Milling down to the stop results in a depth of 5 mm.

Note

Patellar components with a height of 10 mm are recommended as standard. Implants with a height of 8 mm are available as an alternative for thin patellae.

2.4 Drill anchoring holes

Using the patellar drill guide and the patellar peg stop drill, prepare the anchoring holes for the pegs.

2.5 Trial insertion

Trial fit all of the components and reduce the knee to check medial and lateral stability, tibio-femoral rotation, and patellar tracking.
3. Component Implantation

This section describes the steps involved in insertion of the cemented and non-cemented femoral and tibial components and insertion of the tibial insert and patellar component.

3.1 Tibial and femoral implantation

Clean, irrigate and dry the bone bed sufficiently.

Notes

Avoid damaging the surfaces. Use only the dedicated impactors for hammering in the components. Place the impactor block centrally on the component and align it parallel to the mechanical axis.

If an insert has been removed from the tibial component or has tilted when slid into place, visually check the insert for signs of damage before reuse. Do not reuse if damaged. In any case, secure the tibial insert with the pre-assembled screw.

A) Cemented anchoring of the tibial and femoral components

Mix the bone cement according to the manufacturer’s instructions. Cement the tibial component first. Insert the tibial component and hammer home using the impactor (with handle).

Insert the definitive tibial insert into position from anterior. It should click audibly into place. Now insert the femoral component, applying cement to the rear surfaces of the condyles. Remove all excess cement, including the dorsal area in particular. Further secure the tibial insert by tightening the screw with the hex screwdriver.

B) Non-cemented anchoring of the tibial and femoral components

Cancellous bone screws in different lengths are available for non-cemented anchoring of the tibial component. If screws are used, the corresponding polyethylene pegs should be removed from the tibial component by pushing them out from the distal side. Otherwise the polyethylene pegs should be left in the tibial component.
Insert the tibial component and hammer home using the impactor. For the anchorage of the porous coated tibial component, predrill the anchoring holes for the cancellous bone screws with a 3.2 mm drill. Insert the cancellous bone screws and definitive tibial insert. Insert the tibial insert into position from anterior. It should click audibly into place.

Insert the femoral component and hammer home with the impactor. Further secure the tibial insert by tightening the screw with the hex screwdriver.

3.2 Implantation of the patellar component

Mount the patellar inserter on the patellar clamp with ratchet. Coat the backside of the patellar component with cement and fill the three peg holes of the patella with cement. Insert the patellar component with the leg extended and gently press in using the patellar clamp fitted with the patellar inserter. Remove excess cement. Leave the clamp in place until the cement has completely set.

Wound closure

The wound must again be rinsed out thoroughly after implantation. Close the wound in layers, inserting two intra-articular and one subcutaneous Redon drain.
Rehabilitation

The operated leg is immobilized in a splint and the knee joint is cooled. Isometric contraction exercises should be performed on the first postoperative day. Thrombosis prophylaxis until a full load can be borne.

On the second postoperative day, after removing the drains, assisted movement exercises and the use of a motorized splint (CPM) are started. The operated leg can generally bear a load early on.

Mobilization of the patient initially occurs with a walking frame or crutches, which can be eliminated as steadiness of gait improves.

Sterilization

Implants
All the implants described in this Surgical Technique are sterile when they are delivered by the manufacturer. Resterilization is not allowed.

Instruments
System components and instruments are not sterile when they are delivered. Before use they must be cleaned by the usual methods in accordance with internal hospital regulations and sterilized in an autoclave in accordance with the legal regulations and guidelines applicable in the relevant country. (For detailed information please refer to leaflet Lit. No. 1363.)

The correct settings are given in the instructions for use issued by the autoclave manufacturer. Instrument manufacturers and dealers accept no responsibility for sterilization of products by the customer.
Manufacturer
Smith & Nephew Orthopaedics AG
Oberneuhofstrasse 10d
6340 Baar
Switzerland

Contact