Stability you can depend on

Strength you can trust

SMF®
Short Modular Femoral Hip System
Versatility

The SMF™ system addresses a wide range of patient anatomy using only four neck options, three of which can be inverted for a total of seven unique neck positions. When combined with the full complement of Smith & Nephew femoral heads, the SMF system provides 42 distinct head centers.

42 distinct head centers

Each dot represents a head center that is achievable with the SMF system and the vast complement of Smith & Nephew femoral heads.
Stability

Utilizing radiostereometric analysis (RSA), the SMF® system demonstrated stability consistent with the clinically successful SYNERGY® primary hip stem. Moreover, HHS and WOMAC scores indicated excellent relative clinical outcomes for the SMF group.²

With one of the highest coefficients of friction in the industry³, a porosity of 60% and an average pore size which is ideal for bony ingrowth⁴, STIKTITE™ coating provides a solid foundation for both initial and long-term fixation.

Total implant migration as determined by the RSA*

* Combination of subsidence, rotation and translation
The SMF™ system offers surgeons an improved bone sparing modular neck implant which is more than 20% shorter than other conventional hip stems. Additionally, the SMF stem design allows for a higher neck resection which conserves more of the patient’s femur than conventional stems. Saving more bone during a primary hip arthroplasty means a wider range of options for the future.

For more information, talk with your Smith & Nephew sales representative or visit online at shortmodular.com
Strength

A CoCr modular neck provides for a strong neck construct. Fatigue testing has shown that the SMF™ cobalt chrome modular neck design exceeds the fatigue strength of the same neck design made out of titanium alloy by as much as 83% and a conventional titanium monolithic hip stem by as much as 18%.1

Relative neck fatigue strength

- Ti modular stem: 83%
- SMF stem: 18%
- Ti monolithic stem: 18%

1. Source: [Provided data or reference number]
1 Aldinger P, Tsai S, and Bergin A. CoCr and Ti-6Al-4V Modular Neck Fatigue Testing, Poster no. 479 presented at the Society for Biomaterials 2009 Annual Meeting and Exposition, April 22-25, 2009, San Antonio, TX.

