Anterior Cut First Surgical Technique
GENESIS II Anterior Cut First Surgical Technique

Table of Contents

Introduction .. 2
Preop Planning ... 3
Short Technique ... 4
Femoral Preparation .. 6
Tibial Preparation .. 15
Femoral and Tibial Trialing 20
Patellar Preparation .. 22
Component Implantation .. 26
Appendix ... 29

Nota Bene:
The technique description herein is made available to the healthcare professional to illustrate the authors’ suggested treatment for the uncomplicated procedure. In the final analysis, the preferred treatment is that which addresses the needs of the patient.

Indications for Total Knee Replacement:
Rheumatoid arthritis.
Post-traumatic arthritis, osteoarthritis, or degenerative arthritis in older patients whose age, weight, and activity level are compatible with an adequate long-term result.
Failed osteotomies, unicompartmental replacement, or total knee replacement. Posterior stabilized knee systems are designed for use in patients in primary and revision surgery, where the anterior and posterior cruciate ligaments are incompetent and the collateral ligaments remain intact. Constrained knee systems are designed for use in patients in primary and revision surgery, where the posterior cruciate ligament and one or both of the collateral ligaments (i.e. medial collateral and/or lateral collateral ligament) are absent or incompetent.
Introduction

The GENESIS™ II Total Knee System has been designed to offer the orthopaedic surgeon solutions to address intraoperative situations. Implant function is directly related to accurate surgical technique. The GENESIS II instrumentation has been developed to be an easy-to-use system that will assist the surgeon in obtaining accurate and reproducible knee alignment. The use of patent pending locking cams and quick connects will save time and allow the surgeon to easily align cutting blocks and assemble instrumentation. The intraoperative option of anterior or posterior femoral referencing offers the surgeon the ability to select the femoral implant size that best fits the patient.

The tibial instrumentation is designed to adjust for tibia variation by offering a movable medial offset at the ankle. Left and right tibial cutting blocks avoid impingement with the patellar tendon and allow the surgeon to affix the block more intimately with the anterior proximal tibia. As determined by anatomical restrictions or surgeon preference, both intramedullary and extramedullary tibial alignment options are available. While it has been the designers’ objective to develop accurate, easy-to-use instrumentation, each surgeon must evaluate the appropriateness of the following technique based on his or her medical training, experience, and patient evaluation.

Contributing Clinicians

Robert B. Bourne, M.D., F.R.C.S.C.
Chief of Orthopaedic Surgery
University Hospital
The University of Western Ontario
London, Ontario, Canada

Steven B. Haas, M.D., MPH
Assistant Professor of Orthopaedic Surgery
Cornell University Medical College
Attending Orthopaedic Surgeon
The Hospital for Special Surgery
New York, New York

Richard S. Laskin, M.D.
Professor of Clinical Orthopaedic Surgery
Cornell University Medical College
Attending Orthopaedic Surgeon
The Hospital for Special Surgery
New York, New York

Michael Ries, M.D.
Associate Professor and Vice Chairman
University of California San Francisco
Department of Orthopaedic Surgery
San Francisco, CA

William B. Smith, M.D.
Assistant Clinical Professor in Orthopaedic Surgery
Medical College of Wisconsin
Columbia Hospital
Milwaukee, Wisconsin

Mark A. Snyder, M.D.
Clinical Instructor
University of Cincinnati
Orthopaedic Surgeon
Wellington Orthopaedic and Sports Medicine
Cincinnati, Ohio

Todd V. Swanson, M.D.
Desert Orthopaedic Center
Las Vegas, Nevada

Jan Victor, M.D.
Department of Orthopaedics
St. Lucas Hospital
Brugge, Belgium
Preop Planning

Determine the angle between the anatomical and the mechanical axes. This measurement will be used intraoperatively to select the appropriate valgus angle so that correct limb alignment is restored. Beware of misleading angles in knees with a flexion contracture or rotated lower extremities. The T-template provided as part of the GENESIS® II templates will help in this determination.

Recommended GENESIS II Sawblade:

- 7144-0374 3M
- 7144-0376 Stryker
- 7144-0378 Amsco-Hall
- 7144-0375 New Stryker

or any .050” or 1.27 mm Sawblade
Short Technique

Anterior Cut First Surgical Technique

1. Use the 9.5 mm femoral drill to open the femoral canal.
2. Slide the femoral valgus alignment assembly up the intramedullary rod until it contacts the distal femur.
3. For anterior referencing, attach the femoral sizing stylus to the anterior referencing (gold color) femoral sizing guide. Attach the guide to the valgus alignment assembly. If indicated size is between two sizes, select the smaller size.
4. For posterior referencing, attach the femoral sizing stylus to the posterior referencing (silver color) femoral sizing guide. Attach the guide to the valgus alignment assembly. If indicated size is between two sizes, select the larger size.

7. Remove the valgus alignment assembly and distal femoral resection stylus from the distal femoral cutting block. Resect the distal femur.
8. Place the femoral A-P cutting block onto the distal femur and secure with angled pins through the sides of the block. Resect the femur.
9. For extramedullary tibial alignment, assemble the extramedullary tibial alignment guide and place the guide onto the tibia. Rotate so that it aligns over the medial third of the tibial tubercle.
10. For intramedullary tibial alignment, place the intramedullary tibial alignment assembly onto the tibia. Rotate so that it aligns over the medial third of the tibial tubercle.

13. Select the appropriate tibial drill guide and place it on the proximal tibia; pin in place.
14. With the 11 mm tibial collet in place, drill with the 11 mm tibial drill and punch with the 11 mm tibial punch.
15. Place femoral, tibial, and articular insert trials in position and perform a trial range of motion. Alignment marks on the front of the trials should match up.
16. Determine whether a porous or nonporous tibial implant will be used. Select the appropriate tibial fin punch and punch through the tibial trial.

19. After trialing the patella, drill for the femoral lugs through the femoral trial. Remove femoral, tibial, and patellar trials.
20. Implant tibial component.
22. Implant articular insert.
5 Resect the anterior cortex.

6 Attach the distal femoral resection stylus and cutting block to the anterior or posterior referencing femoral sizing guide. Pin the distal cutting block to the anterior cortex.

11 Attach the primary tibial stylus to the tibial cutting block. Insert pins through the central holes to secure.

12 Remove the tibial alignment assembly leaving the cutting block on the anterior tibia. Resect the proximal tibia.

17 Determine the appropriate diameter patellar implant. Select correct patellar reamer collet. Attach the patellar reamer guide to the patella.

18 Attach patellar depth stop and reamer dome to reamer shaft. Attach the patellar depth gauge to the reamer guide. Lower patellar depth stop until it contacts the depth gauge. Remove gauge. Ream the patella.

23 Implant patellar component.

1 Place the appropriate size housing resection block on the distal femur. Secure with 1/8” trocar pins through the angled holes in the sides of the block.

2 Attach the posterior-stabilized housing resection collet to the housing resection block.

3 Attach the housing reamer dome to the patellar reamer shaft. Ream through the posterior-stabilized housing resection collet. Ream until the automatic depth stop contacts the collet.

4 Impact the housing box chisel/sizer through the posterior-stabilized housing resection collet to square off the corners of the housing.

5 If the chamfer resections have not been made, they can now be made by cutting through the chamfer slots in the housing resection block.
Femoral Preparation

Step 1: Intramedullary Femoral Alignment

Objective — Align the distal femoral resection at the correct valgus angle using the femoral canal as a reference.

1 Use the 9.5 mm femoral drill to open the femoral canal (Figure 1).

2 Select the appropriate valgus angle bushing based upon preoperative measurements. Assemble the selected bushing to the femoral valgus alignment guide. Make sure the bushing is positioned so that either “left” or “right” (based on the operative knee) is facing anteriorly. When operating on the left knee, “left” should face anteriorly. When operating on the right knee, “right” should face anteriorly. Attach quick connect handles to the valgus alignment guide, if necessary.

3 Attach the modular T-handle to the intramedullary rod. Insert the intramedullary rod through the valgus angle bushing and into the medullary canal. Slide the valgus alignment assembly up the intramedullary rod until it contacts the distal femur. The posterior paddles on the valgus alignment assembly should contact the posterior condyles (Figure 2).

Note: If the posterior condyles are deficient, the femoral rotational alignment guide can be placed over the valgus angle bushing to aid in proper rotational alignment (Figure 3). Make sure that the guide is positioned so that either “left” or “right” (based on the operative knee) is facing distally. When operating on the left knee, “left” should face distally. When operating on the right knee, “right” should face distally. The valgus alignment guide can be placed in a neutral orientation by aligning the outriggers of the femoral rotational alignment guide with the epicondyles and the trochlear reference line on the distal surface of the femoral rotational alignment guide with the trochlear groove.

4 Remove the modular T-handle from the intramedullary rod.

5 Secure the valgus alignment assembly to the distal femur by impacting the floating pins.
Femoral Preparation

Step 2: Femoral Sizing and Preliminary Anterior Resection

Objective — Determine the correct size femoral implant and resect the anterior cortex to provide a reference for the femoral A-P cutting block.

The following describes the anterior referencing technique. The posterior referencing technique begins on page 8.

Option A: Anterior Referencing

Anterior Referencing Femoral Instrumentation ensures restoration of the patellofemoral joint. If the indicated size falls between two sizes, the smaller size is chosen to avoid overstuffing of the flexion space.

1. Attach the femoral sizing stylus to the anterior referencing femoral sizing guide (gold color).
2. Attach the anterior referencing femoral sizing guide to the valgus alignment assembly (Figure 4).
3. Lower the stylus to the lateral anterior cortex and note the indicated size. If you are between two sizes, pin the sizing guide through the hole of the smaller size without moving the sizing guide. (Figure 5).

(If the indicated size is closer to the larger size, you have the option of switching, intraoperatively, to the posterior referencing femoral technique to select the larger size. [For a complete explanation of this patented technique option, see appendix.])
Femoral Preparation

4 Secure this resection level by impacting a 1/8” trocar pin through the hole adjacent to the selected femoral size.

5 Remove the anterior femoral sizing stylus from the anterior referencing femoral sizing guide by depressing the gold release button on the anterior femoral sizing stylus.

6 Resect the anterior cortex (Figure 6).

Option B: Posterior Referencing

Posterior referencing instrumentation ensures that the flexion and extension spaces remain balanced. If the indicated size is between two sizes, the larger size is chosen to avoid notching the anterior cortex.

1 Attach the femoral sizing stylus to the posterior referencing femoral sizing guide (silver color).

2 Attach the posterior referencing femoral sizing guide to the valgus alignment assembly.

3 Lower the stylus to the lateral anterior cortex and note the indicated size (Figure 7). If you are between two sizes, move the resection level anteriorly to align the selected size with the sizing hash mark. This will guard against notching the anterior cortex.

[If the indicated size is closer to the smaller size, you have the option of switching, intraoperatively, to the anterior referencing femoral technique to select the smaller size. (For a complete explanation of this patented technique option, see appendix.)]
Femoral Preparation

4 Secure the posterior referencing femoral sizing guide to the valgus alignment assembly by impacting a 1/8" trocar pin through the hole adjacent to the selected femoral size.

5 Remove the femoral sizing stylus from the posterior referencing femoral sizing guide by depressing the gold release button on the anterior femoral sizing stylus.

6 Resect the anterior cortex (Figure 8).

Step 3: Distal Femoral Resection

Objective — Resect the distal femur at the correct valgus angle.

1 Attach the distal femoral resection stylus and cutting block to the anterior or posterior referencing femoral sizing guide (Figure 9). The distal femoral cutting block will slide distally until it hits a stop. The cutting block can be locked in this position by engaging the cam mechanism.
2 Secure the distal femoral cutting block to the anterior cortex by impacting or drilling pins through the holes marked “primary” (Figure 10).

3 Attach the modular T-handle to the intramedullary rod and remove the rod.

4 Disengage the cam on the distal femoral cutting block and remove the valgus alignment assembly and distal femoral resection stylus from the distal femoral cutting block (Figure 11).

5 Only the distal femoral cutting block should remain on the femur. Resect the distal femur (Figure 12).

For a guided resection, attach the modular femoral slot to the distal femoral cutting block or use the slotted block.

6 Remove the distal femoral cutting block.
Step 4: Finishing Femoral Resection

Objective — Perform the final posterior, anterior, and chamfer resections to prepare the femur for the femoral implant.

1. Add quick connect handles as necessary to the appropriate femoral A-P cutting block.
 Place the femoral A-P cutting block onto the distal femur and secure with angled pins through the sides of the block (Figure 13). If additional fixation is necessary, the angled anterior holes may also be used.
 The A-P cutting block should seat flush with the cut anterior and distal surface.

2. Resect the femur (Figure 14) in the following order:
 1. Posterior resection
 To help guide the saw blade during the posterior resection, attach the modular femoral slot to the A-P cutting block.
 Note: Remove the modular femoral slot before any other cuts are made.
 2. Posterior chamfer
 3. Anterior resection
 4. Anterior chamfer
3 Remove the femoral A-P cutting block.

[If it is preferable to resect the chamfers over a block rather than through slots, an optional chamfer cutting block is available. To correctly align the chamfer cutting block on the distal femur, drill 1/8” pins through the holes on the distal face of the A-P cutting block (Figure 15). These pins are used as marker holes for the spikes on the chamfer cutting block.]

Option:
Impact the spikes of the chamfer cutting block into the previously drilled holes until the chamfer cutting block is seated on the distal femur. Check to make sure the chamfer cutting block is flush on the flat distal femur. Resect anterior and posterior chamfers (Figure 16).
Femoral Preparation

Step 5: Finishing Posterior-Stabilized Femoral Resection

Objective — Perform the final chamfer resections and prepare for the posterior stabilized implant.

Posterior-Stabilized Technique

The only difference between the cruciate retaining femoral component and the posterior-stabilized femoral component is the addition of the housing for the cam mechanism. All other inner box dimensions are the same. The posterior-stabilized housing is prepared after the anterior and posterior resections are complete. However, the anterior and posterior chamfer resections can be finished before or after preparing for the posterior stabilized housing.

1. Before preparing for the posterior-stabilized housing, place the appropriate size housing resection block on the distal femur. Make sure the block is centered on the distal femur. (To help with centering, the housing resection blocks have the same M-L dimension as the implants.) Secure with 1/8" trocar pins through the angled holes in the sides of the block (Figure 17).

2. Attach the posterior-stabilized housing resection collet to the housing resection block (Figure 18).
Femoral Preparation

3 Attach the housing reamer dome and posterior stabilized reamer sleeve to the patellar reamer shaft. The reamer dome is both an end-cutting and a side-cutting reamer.

4 Ream through the posterior stabilized housing resection collet (Figure 19). Ream until the automatic depth stop contacts the collet. Then move the reamer anterior and posterior until it contacts the automatic stop.

5 Impact the housing box chisel/sizer through the posterior stabilized housing resection collet to square off the corners of the housing (Figure 20). The housing box chisel/sizer may have to be impacted twice to ensure that the full length of the box is prepared.

6 If the chamfer resections have not been made, they can now be made by cutting through the chamfer slots in the housing resection block (Figure 21).

Note: if a nonslotted chamfer resection is preferred, you may attach the chamfer cutting block to the distal femur to perform the chamfer resections.
Tibial Preparation

Step 1: Tibial Alignment

Objective — Align the resection for the tibial baseplate perpendicular to the mechanical axis.

The following describes the technique for extramedullary tibial alignment. If intramedullary tibial alignment is preferred, the intramedullary tibial alignment technique follows on page 16.

Option A: Extramedullary Tibial Alignment

1 Assemble the extramedullary tibial alignment guide and place the guide onto the tibia (Figure 22). Make sure that the correct left or right tibial cutting block is chosen and that the alignment guide is correctly set distally for the left or right leg.

2 Impact the longer spike of the spiked fixation rod into the proximal tibia.

3 Assess rotation of the alignment guide and slope of the cutting plane and impact the second spike to secure the assembly. Rotational alignment is critical due to the 3° posterior sloped cut. The center of the cutting block will also be the center of the tibial tray and articular surface. The goal is to align the extramedullary alignment assembly rotationally so that it aligns over the medial third of the tibial tubercle and over the second toe. The slope can be adjusted according to the patient’s anatomy.

Note: 4° of slope is built into the articular insert and 3° of slope is built into the tibial cutting block. A neutral or slightly sloped alignment should be chosen.
Option B: Intramedullary Tibia Alignment

1. Make a 9.5 mm pilot hole into the tibial canal (Figure 23). This can be made through the tibial drill guide with the “I/M” tibial collet in place to ascertain correct placement. (Note: a preliminary resection of the tibial spine may facilitate seating of the tibial drill guide onto the proximal tibia.)

2. Attach the correct left or right tibial cutting block to the intramedullary tibial alignment assembly and pass the intramedullary rod through the cannulated alignment sleeve on the alignment assembly.

3. Slowly insert the rod into the tibial canal (Figure 24).

4. Assess rotation of the intramedullary tibial alignment guide. Rotational alignment is critical due to the 3° posterior sloped cut. The alignment rod of the intramedullary tibial alignment assembly should align with the medial third of the tibial tubercle.

5. Impact the proximal end of the cannulated alignment sleeve to drive the distal spikes into the proximal tibia to lock rotational alignment (Figure 25).
Tibial Preparation

Step 2: Tibial Resection

Objective — Resect the proper amount of tibia for the tibial implant.

1. Attach the primary tibial stylus to the tibial cutting block. Lower the cutting block until the stylus touches the less affected (less worn) side of the tibia (Figure 26). (This technique should allow the placement of the 9 mm articular insert [6.7 mm of UHMWPE].)

2. Insert pins through the central holes to secure the tibial cutting block to the tibia (Figure 27).
Tibial Preparation

3 Remove the alignment assembly leaving the tibial cutting block on the anterior tibia (Figure 28).

4 Attach the quick connect handle to the tibial cutting block. Pass the extramedullary rod through the hole in the handle to check tibial alignment (Figure 29).

5 Use the appropriate GENESIS™ II sawblade to resect the proximal tibia (Figure 30).

For a guided resection, attach the modular tibial slot to the tibial cutting block or use the slotted block.
Tibial Preparation

Step 3: Tibial Sizing

Objective — Select the appropriate size tibial implant and prepare for the tibial stem.

1. Use the tibial viewing template to determine the tibial implant size that best fits the proximal tibia (Figure 31).
2. Select the appropriate tibial drill guide and place it on the proximal tibia.
3. Once the tibial drill guide has been centralized on the proximal tibia, pin the drill guide in place (Figure 32).
4. With the 11 mm tibial collet in place, drill with the 11 mm tibial drill (Figure 33) and punch with the 11 mm tibial punch (Figure 34). If a 9.5 mm hole has already been made for use of the intramedullary tibial alignment assembly, you only need to utilize the 11 mm tibial punch at this time.
5. Remove the tibial drill guide.
6. Place the tibial trial onto the proximal tibia and assess coverage (Figure 35).
Femoral and Tibial Trialing

Objective — Confirm that implant fit and tibial rotation are correct and determine the appropriate insert thickness.

1. If femoral or tibial trials are not positioned, replace them at this time.

2. Use the appropriate insert trial to determine leg stability and alignment. Start with the 9 mm insert trial (Figure 36).

3. Perform a trial range of motion. The alignment marks on the front of the femoral and tibial trials should line up (Figure 37). The quick connect handle may be attached to the tibial trial and used to rotate the tibial trial to the appropriate rotational alignment.
With the handle attached to the tibial trial, take the knee into full extension. Pass the extramedullary rod through the handle to assess full leg alignment. Once correct tibial alignment has been selected, a rotational alignment mark can be made on the anterior tibia using a cautery knife. If it is preferable to use a spacer block to check alignment, insert the block into the joint (Figure 38). Since the spacer block has two different ends, one for flexion and one for extension, check to make sure the appropriate end of the block is used.

Determine whether a porous or nonporous tibial implant will be used. Select the appropriate tibial fin punch to prepare the fins and punch through the tibial trial (Figure 39). If the tibial bone is sclerotic, begin the fin slot with a burr or thin saw blade to prevent tibial fracture before using the fin punch.
Patellar Preparation

Step 1: Patellar Sizing

Objective — Determine proper placement for the patellar implant.

1. Determine the appropriate diameter patellar implant.
2. Select the correct patellar reamer collet and slide it into place on the patellar reamer guide.
3. Attach the patellar reamer guide to the patella. Tighten the patellar reamer guide on the patella (Figure 40).
Patellar Preparation

Step 2: Ream the Patella

Objective — Determine proper reaming depth and prepare the patella to ensure the original patellar thickness has been restored.

1. Use the patellar calipers to measure the thickness of the patella (Figure 41).

2. Attach the patellar depth gauge to the reamer guide based on the selected patellar design. Every patellar design has its own depth gauge. The depth of reaming for each design is as follows:
 - Biconvex patellae: 13 mm
 - Resurfacing patellae: 9 mm
 - All-poly with FLEX-LOK™ peg: 15 mm
3 Attach the patellar reamer dome and patellar depth stop to the patellar reamer shaft. Before the patellar reamer assembly is attached to power equipment, lower the assembly through the patellar reamer guide until the reamer dome contacts the patella (Figure 42).

4 Swing the patellar depth gauge around so that the “claw” surrounds the patellar reamer shaft.

5 Lower the patellar depth stop until it contacts the patellar depth gauge. The patellar depth stop will automatically lock in place (Figure 43).

6 Remove the depth gauge.

7 Attach the patellar reamer assembly to power equipment, making sure that the position of the patellar depth stop has not changed.

8 Ream the patella until the depth stop engages the patellar reamer guide.

Figure 42

Figure 43
Patellar Preparation

Step 3: Patellar Trialing

Objective — Confirm correct tracking of the patellar implant.

1. With the patellar reamer guide still in position, place the patellar trial into the prepared patella.
2. Use the patellar calipers to remeasure the composite thickness of bone and trial.
3. Remove the patellar reamer guide.
4. Perform a trial range of motion and assess patellar tracking. Medial-lateral placement of the femoral trial can be adjusted to maximize patellar tracking.
5. Drill for the femoral lugs through the femoral trial with the femoral lug drill (Figure 44).
6. Remove the tibial trial. Attach the T-shaped end of the universal extractor to the femoral trial (Figure 45). Remove the femoral trial. Use a towel clip to remove the patellar trial.
Component Implantation

Step 1: Tibial Implantation

1. Mix and prepare cement for placement on the proximal tibia.

2. Use the tibial baseplate impactor to seat the tibial implant onto the prepared tibial surface (Figure 46).

3. If the porous tray and screws will be used, orient the tibial screw drill guide over each screw hole and drill using the tibial screw drill. The screws may be angled up to 10° to reach the cortex if desired.

4. Using the screw depth gauge, determine the depth of each screw hole to select the appropriate size screw. Insert and tighten screws of the tibial implant, alternating to avoid liftoff.

5. Remove excess cement.
Component Implantation

Step 2: Femoral Implantation

1. Mix and prepare bone cement for placement on the femoral component and distal femur.
2. Place the femoral implant onto the prepared femur.
3. Use the femoral impactor to fully seat the implant (Figure 47).
4. Remove excess cement.
5. Place the appropriate size tibial insert trial onto the tibial implant and take the leg into extension to pressurize the cement.

Figure 47

Step 3: Patellar Implantation

1. Assemble the patellar cement clamp to the patellar reamer guide.
2. Apply bone cement to the reamed patella.
3. Place the patellar implant onto the prepared patella.
4. Clamp the patellar implant into the bone and remove the extruded cement (Figure 48).

Figure 48
Component Implantation

Step 4: Insert Placement

1. After determining the correct thickness of the articular insert, slide the insert into the tibial baseplate as far as possible, engaging the peripheral locking mechanism.

2. Attach the articular inserter/extractor to the tibial tray. Lift the articular inserter/extractor superiorly until the anterior lip of the articular insert is fully seated (Figure 49).

 Note: A mallet should not be used when inserting the polyethylene. A mallet can cause damage to the insert’s locking mechanism.

Figure 49

Closure

Close in the usual manner.
Anterior referencing and posterior referencing femoral instrument philosophies differ in their primary reference point and, therefore, the anterior-posterior placement of the femoral implant. These basic differences have inherent advantages and disadvantages. The system you select must be chosen based upon surgeon familiarity and patient indications.

Anterior Referencing

Anterior-posterior placement of the femoral component is based on the anterior cortex which serves as the primary point of reference. The anterior resection level remains constant and flush with the anterior cortex so that the patellofemoral joint can be most accurately reconstructed. The posterior resection level varies (based on implant size) with respect to the posterior condyles (Figure 1a). The selected femoral implant will be placed flush with the anterior cortex and, therefore, reapproximate the original patellofemoral joint.

When the sizing guide indicates a femoral implant size that is between two sizes, the smaller size should be selected. If the larger size is selected, the amount of bone resected from the posterior condyles will be less than the thickness of the posterior condyles of the femoral implant (Figure 1b). Therefore, the flexion space will be overstuffed. The result of selecting the smaller size implant is the amount of bone resected from the posterior condyles will be greater than the thickness of the posterior condyles of the femoral implant (Figure 1c). Therefore, the flexion space will be greater than the extension space.

Advantages

- Reapproximation of the patellofemoral joint.
- Reduced chance of notching the anterior cortex.

Disadvantages

- The knee may be loose in flexion.

Figure 1
Posterior Referencing

Anterior-posterior placement of the femoral component is based on the posterior femoral condyles which serves as the primary point of reference. The posterior resection level remains constant with the posterior condyles. The anterior resection level varies (based on implant size) with respect to the anterior cortex (Figure 2a). The amount of bone resected from the posterior condyles will equal the thickness of the posterior condyles on the femoral implant. Because the distal femoral resection is equal to the thickness of the distal femoral implant, the flexion and extension space will be balanced.

When the sizing guide indicates a femoral implant size that is between two sizes, the larger size should be selected. If the smaller size is selected, there is a strong chance of notching the anterior cortex (Figure 2b). However, the consequence of selecting the larger size is that the patello-femoral joint may be raised and overstuffed, thereby reducing the amount of flexion achieved (Figure 2c).

Advantages

Balanced flexion and extension spaces.

Disadvantages

Chance of notching the anterior cortex. May overstuff the patellofemoral joint.

How does the patented GENESIS® II femoral instrumentation and surgical technique improve on the above situation?

Ideally, you could intraoperatively choose which referencing system (anterior or posterior) best fits each individual patient. For example, consider the following two scenarios:

1. You use a posterior referencing femoral instrument system. When sizing the femur, your sizing guide falls between two sizes but you are much closer to the smaller size. Presently, you would be forced to choose the larger size so as to avoid notching the anterior cortex. By choosing the larger size, you are overstuffed the patellar joint by up to 3.5 mm. Since the femoral sizer is indicating that a smaller size would fit this particular patient’s femur better, why not pull out an anterior referencing instrument system for this patient? By making this switch, you would reapproximate the patellofemoral joint and enlarge the flexion gap by 0.5 mm. A much better compromise!
2. You use an anterior referencing femoral instrument system. When sizing the femur, your sizing guide falls between two sizes but you are much closer to the larger size. Presently, you would be forced to choose the smaller size so you do not overstuffed the flexion space. By choosing the smaller size, you are enlarging the flexion space by as much as 3.5 mm. Since the femoral sizer is indicating that a larger size would fit this particular patient's femur better, why not pull out a posterior referencing instrument system for this patient? By making this switch, you would reapproximate the flexion space and overstuff the patellofemoral joint by 0.5 mm. Again, a much better compromise!

The option of being able to intraoperatively switch from one femoral referencing system to another allows you to better match the patient's natural femoral anatomy. GENESIS II not only offers eight femoral sizes, it also lets you choose the best of two femoral placement options, thus doubling your femoral sizing options.

With GENESIS II, the switch from one femoral referencing system to another is as easy as switching from one instrument to another right there on the table. Both the anterior and the posterior referencing sizing guides are in the sterilization tray and available to you at every surgery.