Introduction

The treatment of oncological wounds includes surgery, irradiation, chemotherapy and/or hormone therapy. Specific problems are associated with these wounds. These are, necrosis, bad odour, social isolation and difficult to dress. This can have negative influences on the patients quality of life.

Case History

A patient male age 74, presented with a bleeding tumour. The tumour is located behind the ear and measures (sizes) 8 x 6 x 4 cm. Pathology showed a metastasis of a melanoma unknown primary and further analysis showed lung cancer. The size of the tumour combined with the radiation therapy resulted in necrosis and infection. The position of the tumour made bandaging of the wound extremely difficult. The lung cancer was treated with palliative chemotherapy.

Aim

Protection of tumour and the surrounding healthy tissue, prevention of bleeding, removal of necrosis, suppression of infection, pain and odour control, reducing the tumour, patient comfort.

Method

Use of TIME model

Tissue - Removal of necrotic tissue in the tumour
Infection - Flagyl™ gel and alginate silver dressing (ACTICOAT® Absorbent)
Moisture - Flagyl gel/Adhesive foam dressing (ALLEVYN™ Adhesive)
Edge - Protect wound edges from maceration with cut rings of non-adhesive foam dressing (ALLEVYN Non-Adhesive)

Procedure

After extensive surgical removal of a part of the tumour, the wound was cleaned and treated three times a week. After 2 weeks a Pseudomonas infection was recognized. The therapy was changed to an alginate silver dressing (ACTICOAT Absorbent), covered with adhesive foam dressing (ALLEVYN Adhesive).

Result

After six weeks of treatment the infection is under control, tissue is viable and no maceration on the edges of the wound has occurred. The use of foamdressing for moisture control is continued.

Conclusion

The methods used in treatment of oncological wounds can be an obstructing factor in wound healing. However by using the TIME model a more effective choice of treatment can be made. This makes an optimal wound treatment possible and proves the TIME model to be a valuable tool in the treatment of oncological wounds.