The impact of hydrosurgical debridement on wounds containing bacterial biofilms

Nick Allan¹, Merle Olson¹, Dennis Nagel² and Robin Martin³

¹Innovotech Inc., Edmonton, Canada, ²Innovotech Animal Resource Centre, Crossfield, Canada, ³Smith & Nephew Medical Ltd, Hull, UK. Correspondence to: nick.allan@innovotech.ca or robin.martin@smith-nephew.com

Introduction

Bacterial biofilms are frequently present as micro-colonies within granulation tissue where they resist antibacterial therapies and cause delays to healing. We have assessed the effect of VERSAJET® tangential hydrosurgical debridement on wound biofilms using a polymicrobial porcine model to see how great a reduction in levels of embedded biofilm bacteria can be achieved.

Materials and Methods

Full thickness wounds were made on the flanks of 6 Yorkshire pigs (see Figure 1). Each wound was inoculated with a mixture of Pseudomonas aeruginosa, Staphylococcus epidermidis and Fusobacterium necrophorum as previously described. After 7 days all wounds were filled with a sloughy granulation tissue (see Figure 1). The VERSAJET handpiece uses a high pressure fluid jet parallel to the tissue surface to create a Venturi effect which draws soft tissues into the fluid path where they are cut and debris is evacuated (see Figure 2). Up to 2 wounds on each animal were subjected to a single episode of tangential hydrosurgical debridement (at power setting 7) to produce a smooth, clean granulation surface (see Figure 3). Up to 6 wounds were left untreated as controls. Biopsies (4 mm punch) were harvested for determination of bacterial counts, myeloperoxidase enzyme activity and histology before and after debridement. The remaining wounds were allowed to heal.

Results

After 7 days biopsies from control wounds contained high levels of a mixture of all 3 input bacteria at close to 10⁷ CFU (colony forming units) per g tissue (see Figure 5). Histology confirmed that embedded bacterial micro-colonies were present throughout the granulation tissue (see Figure 4). Following VERSAJET® hydrosurgical debridement, the levels of embedded bacteria were compared statistically using non parametric tests. Bacteria were reduced from a median log₁₀ 8.4 (range 8.1-9.1) CFU g⁻¹ tissue to a median of log₁₀ 5.5 (5.1-6.9) CFU g⁻¹ tissue, a reduction of (log₁₀ 2.8) (n=6, P= 0.031). Figure 6 shows that VERSAJET® hydrosurgical debridement also significantly reduced the levels of the inflammatory neutrophil marker myeloperoxidase. The differences were tested with non parametric tests and found to be statistically significant: median (control) 15.80 (range 11.7-20.0) to (VERSAJET) 4.00 (range 3.2-5.3) ng mL⁻¹ biopsy tissue extract (n=6, P= 0.031). Figure 4 shows a significant improvement in wound bed tissue quality.

Discussion

It is becoming established that delayed healing wounds often contain bacteria in complex communities of polymicrobial biofilms embedded in granulation tissue. For this reason it is recognized that surgical debridement is an important component of strategies to achieve wound healing and closure. Although established in regular clinical practice, VERSAJET® hydrosurgery has not yet been proven to be able to remove biofilm bacteria embedded in granulation tissue. In this study high levels of bacteria present as embedded micro colonies were reduced by close to 1000 fold by VERSAJET debridement of the biofilm infected granulation tissue. Inflammatory neutrophil markers were also reduced. Further reduction would have been possible by removal of greater depths of granulation tissue but the wounds were brought to a smooth clean surface, level with the surrounding tissue as is common in clinical practice. It can be concluded that VERSAJET® is an effective tool to remove biofilm contaminated tissues.
The impact of hydrosurgical debridement on wounds containing bacterial biofilms

Nick Allan¹, Merle Olson¹, Dennis Nagel² and Robin Martin³

¹Innovotech Inc., Edmonton, Canada, ²Innovotech Animal Resource Centre, Crossfield, Canada, ³Smith & Nephew Medical Ltd, Hull, UK.
Correspondence to: nick.allan@innovotech.ca or robin.martin@smith-nephew.com

First presented at 20th Meeting of the European Tissue Repair Society, Gent, Belgium, September 15–17, 2010.