Combined Technique for JOURNEY II BCS and JOURNEY II CR
JOURNEY™ II BCS contributing surgeons:

Johan Bellemans, MD, PhD
Professor of Orthopaedic Surgery
Chairman of the Department of Orthopaedic Surgery and Traumatology
Catholic University Hospitals
Leuven and Pellenberg, Belgium

Fred D Cushner, MD
Insall Scott Kelly Institute for Orthopaedic and Sports Medicine
New York, NY

Jonathan Garino, MD
Paoli Memorial Hospital
Paoli, Pennsylvania

Paul Greenlaw, MD
Carolina Orthopaedic and Sports Medicine
New Bern, NC

Steven Haas, MD
Chief of the Knee Service
Hospital for Special Surgery
New York, New York

Michael Ries, MD
Chief of Arthroplasty
UCSF Medical Center
San Francisco, CA

Mark A Snyder, MD
Director, Orthopaedic Center of Excellence
Good Samaritan Hospital
Director, Adult Reconstructive Division
Wellington Orthopaedic and Sports Medicine Foundation
Cincinnati, Ohio

Jan Victor, MD
Professor of Orthopaedic Surgery
Chairman of the Department of Orthopaedics and Traumatology
Ghent University Hospital
Ghent, Belgium

Timothy Wilton, MA, FRACS
Consultant Orthopaedic Surgery
Derbyshire Royal Infirmary
Derby, UK

Dr. Nick Sotereanos
Allegheny General Hospital
Pittsburgh, PA

JOURNEY II CR contributing surgeons:

Johan Bellemans, MD, PhD
Professor of Orthopaedic Surgery
Chairman of the Department of Orthopaedic Surgery and Traumatology
Catholic University Hospitals
Leuven and Pellenberg, Belgium

Alfred Tria, MD
Chief of Orthopaedics
St. Peters University Hospital
New Brunswick, New Jersey

David Drucker, MD
Staten Island University Hospital
Staten Island, New York

Alois Franz, MD
Medical Director
Orthopaedic Department
St. Marien Krankenhaus
Siegen, Germany

Murali Jasty, MD
Boston, Massachusetts

Gerald Jerry, MD
Bone & Joint Institute, P.C.
Port Huron, Michigan

Michael Ries, MD
Chief of Arthroplasty
UCSF Medical Center
San Francisco, CA

Mr. Neil Thomas, MD
North Hampshire Hospital
Basingstoke, Hampshire, United Kingdom

Jan Victor, MD, PhD
Professor of Orthopaedic Surgery
Chairman of the Department of Orthopaedics and Traumatology
Ghent University Hospital
Ghent, Belgium

Ate Wymenga, MD, PhD
Department of Orthopaedics
St. Maartenskliniek
Nijmegen, Netherlands

Nota Bene

The technique description herein is made available to the healthcare professional to illustrate the author's suggested treatment for the uncomplicated procedure. In the final analysis, the preferred treatment is that which addresses the needs of the specific patient. For more product, health and safety information, review the package inserts for each device.
Contents
Surgical technique summary 2
Introduction and indications 6
Prologue 7
Incision 8
Instrument assembly 10
Intramedullary alignment 11
Distal resection 12
Instrument assembly 14
EM tibial preparation 15
Tibial resection 17
Instrument assembly 20
IM tibial preparation 21
Tibial resection 22
Extension gap assessment 24
Flexion gap assessment 25
Femoral positioning and sizing 26
Femoral AP and chamfer resections instrument 28
Resected flexion gap assessment 30
Downsizing femoral component 31
Additional distal resection 31
Patellar preparation 32
Resection guide technique 35
JOURNEY II BCS box preparation 36
Femoral and tibial trialing 38
Final implantation and closure 40
JOURNEY II CR notch preparation 42
Femoral and tibial trialing 43
Final implantation and closure 45
JOURNEY II TKA articular insert 47
Patellar component 47
Closure 48
JOURNEY II BCS Specifications 49
JOURNEY II CR Specifications 50
Tray layouts 54
Notes 65

JOURNEY™ II TKA
Total Knee System
1 Distal femoral resection
Verify the distal resection removes bone from the deepest portion of the trochlear groove creating a butterfly pattern (i.e., a continuous ridge of cortical bone running between medial and lateral condyles)

Note Must use PROFIX$^\text{TM}$ sawblades (1.35mm thick) for all cutting blocks.

2 Proximal tibial resection
The tibial implant is 9.5mm thick on the medial side and 12mm thick on the lateral side. It is recommended to remove the corresponding implant thickness from the unaffected side.

Align EM Tower parallel to the tibial long axis (3° of posterior slope built into cutting block).

Excise all unretained cruciate ligament attachments from both the femur and tibia.

3 Extension gap assessment
The 10mm Spacer Block should insert easily and the leg should drop passively into full extension to ensure 1mm of laxity.

If the 10mm Spacer Block doesn’t fit and sufficient tibia has been resected consider removing 2mm more distal femur.

Note Tibial bone fragment on lateral side should be 10.5 - 11mm thick.

4 Flexion gap assessment
The 10mm Tibial Spacer Block should insert easily between the posterior condyles and the resected tibia in flexion. If the 10mm Tibial Spacer Block feels too loose or too tight, simply exchange the 10mm Shim to achieve balance (e.g. 11mm or 9mm respectively).

Remember the difference between the extension and flexion spacers (e.g. 10mm Ext - 11mm Flex = -1mm Flex Imbalance).

5 Femoral sizing
Placement: Mate sizing guide flush to the distal resection. Mate the medial paddle with the apex of the medial posterior condyle. Pin above the medial paddle.

Rotation: Set rotation relative to anatomic landmarks (Posterior Condyle, AP Axis and Epicondylar Axis)

Balance: Adjust AP position to account for any Extension/Flexion mismatch (e.g., -1mm)

Finalize: Drill through the holes to set the final AP position and rotation. Then estimate AP Femur size with the stylus (see image for placement).

Note 3mm between femoral A/P sizes.
6 Femoral A/P and chamfer resections
Select the AP cutting block size that minimizes anterior/posterior adjustment to avoid overstuffing the patella femoral joint or femoral notching.

Tip Lock the knob with 3.5mm hex driver prior to pinning.

With the flexed posterior cut, use retractors and take precautions to protect the popliteus tendon.

Tip After completing all cuts re-face the anterior cut.

7 BCS Box preparation
Once the anterior flange of the femoral trial is fully seated, place one 30mm rimmed SPEED PIN through the antero-lateral flange before removing the impactor. Slide the appropriately sized Box Prep Guide onto the femoral trial anterior to posterior. Ream anterior then posterior. Finish prep by chiseling anterior then posterior.

Tip If the femoral doesn’t sit down fully, remove it, replace A/P cutting block and re-face all the cuts.

7a (JOURNEY II CR) CR Intercondylar notch and femoral lug preparation
Once the anterior flange of the femoral trial is fully seated, place one 30mm rimmed SPEED PIN through the antero-lateral flange before removing the impactor. Using the angled face on the femoral trial as the guide, remove the anterior intercondylar femoral bone using a narrow sawblade.

Select the appropriate size CR notch trial and engage the anterior portion of the notch trial first. Then use the femoral implant impactor to impact the posterior portion of the notch trial until it sits flush with the femoral trial.

Note A: The intercondylar notch preparation removes the bone allowing for a deepened trochlear groove.

Note B: Impaction of the notch trial self preps for the posterior gussets on the femoral implant.

Use the lug drill to prepare for the femoral lugs by drilling to the bottom of both distal holes of the femoral trial.

8 Baseplate alignment
Set position of the tibial baseplate based upon the anatomic landmarks of the tibia (best fit, coverage, and medial 1/3 of the tubercle). Pin the baseplate using two 30mm rimmed SPEED PIN.

Tip Alternatively, if free floating is preferred, a single 30mm SPEED PIN in the medial hole of the baseplate will allow rotational freedom while preventing the baseplate from sliding around.
9 **Component trialing**
The knee should drop passively into full extension.
Under varus/valgus stress, 1-2mm of laxity should be observed throughout the ROM (i.e., 0, 30, 60, 90 and 120°). After trialing, mark the rotational laseretches with cautery and then punch for the appropriate keel size.

10 **Final implantation and closure**
Suction the keel prep hole and avoid contaminating implant cement interface surface with fat or other fluids prior to cement application and apply generous amounts of cement to the dry underside of the baseplate, keel and into the keel prep hole.
Engage the articular insert with the leg in 110° of flexion, bring the leg to full extension and lock it in with the Articular Insert Assembly Tool.
During closure, align the extensor mechanism anatomically or close with the knee in flexion.
Introduction

The goal of the JOURNEY™ II Total Knee System is to enable a higher level of function for total knee replacement patients—to not only relieve pain, but to help them regain their active lifestyles. Function, motion and durability is achieved through the unique features of the JOURNEY II Total Knee System—anatomic alignment, kinematics and advanced bearings.

Patient outcomes can be directly related to accurate surgical technique and precision instrumentation. The JOURNEY II BCS and JOURNEY II CR instrumentation has been developed to assist surgeons in obtaining accurate and reproducible results and reducing OR time.

While it has been the designers’ objective to develop accurate, easy-to-use instrumentation, each surgeon must evaluate the appropriateness of the following technique based on his or her medical training, experience and patient evaluation.

Indications

Indications for use include rheumatoid arthritis; post-traumatic arthritis, osteoarthritis or degenerative arthritis; failed osteotomies or unicompartmental replacement. This system is designed for use in patients in primary total knee replacement surgery, where the anterior and posterior cruciate ligaments are incompetent and the collateral ligaments remain intact.

To replicate normal knee motion, the JOURNEY II BCS and JOURNEY II CR prosthesis provides more mobility in the lateral compartment than other total knee systems. For patients that present with significant varus or valgaus deformities (> 15º), morbid obesity or deficient collateral ligaments consider whether additional implant constraint is more appropriate. If patients with the above mentioned conditions are scheduled for a JOURNEY II BCS or JOURNEY II CR then assess the flexion space under full ligament tension (eg, laminar spreaders) with the patella reduced and consider having a constrained implant option on hand.
Preoperative planning

Determine the angle between the anatomical and the mechanical axis. This measurement will be used intraoperatively to select the appropriate valgus angle so that correct limb alignment is restored. Beware of misleading angles in knees with a flexion contracture or rotated lower extremities.

Note It is recommended to use preoperative templating to determine femoral size because sizes 1-8 and 9-10 have different resection depths.

Recommended Sawblades*

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>71512901</td>
<td>Stryker 2000 ¾” fanned</td>
</tr>
<tr>
<td>71512903</td>
<td>Amsco Hall ¾” fanned</td>
</tr>
<tr>
<td>71512904</td>
<td>3M ¾” fanned</td>
</tr>
<tr>
<td>71512905</td>
<td>Stryker 2000 ½” straight</td>
</tr>
<tr>
<td>71512907</td>
<td>Amsco Hall ½” straight</td>
</tr>
<tr>
<td>71512908</td>
<td>3M ½” straight</td>
</tr>
<tr>
<td>71512910</td>
<td>VersiPower Plus ¾” fanned</td>
</tr>
<tr>
<td>71512911</td>
<td>PowerPro ¾” fanned</td>
</tr>
</tbody>
</table>

Or any 0.053” or 1.35mm thickness sawblade
Incision

Leg position
Appropriate leg position is crucial when performing less invasive total knee arthroplasty. During the procedure, the knee is flexed to 70-110°. Hyperflexion is used only intermittently for specific portions of the case, such as insertion of the tibial component. To aid in holding the leg, a sandbag is placed across from the contralateral ankle when positioning the patient on the table.

Incision
With the leg fully extended, a longitudinal incision is made over the anterior aspect of the knee along the medial border of the patella. The incision extends approximately from the middle of the tibial tubercle to a point slightly proximal to the superior pole of the patella. If significant tension is noted at the skin edges, the incision should be extended to minimize risk of wound edge necrosis.

Arthrotomy
The procedure can be performed using a “mini-patellar” capsulotomy or a “mini-mid-vastus” capsulotomy. The mid-vastus may offer some advantages for quicker recovery of extensor function postoperatively. However, in cases where the extensor mechanism is stiff or the patient is heavily muscled, the parapatellar capsulotomy may allow easier mobilization of the patella. Either type of arthrotomy can be extended to conventional length if exposure is problematic.
For the mini-mid-vastus approach, begin 5mm medial to the tibial tubercle and extend dissection around the medial border of the patella. The arthrotomy is extended up to the proximal border of the patella.

The suprapatellar pouch is identified, separated from the underside of the tendon and preserved.

The distal extent of the vastus medialis (VMO) is identified and the orientation of the fibers is determined. An oblique cut is made to the VMO and the muscle fibers are then spread bluntly for approximately 2cm.

Exposure

With the leg extended, the patella is retracted laterally. The fat pad is excised both medially and laterally leaving a small amount of fat deep under the patellar tendon. The patellar tendon proximal to the tubercle is dissected from the tibia. The release of the anterior horn of the lateral meniscus at this point will facilitate retraction of the extensor mechanism and exposure to the lateral side. The anterior horn of the medial meniscus is divided and dissection is carried around the proximal medial tibia using electrocautery and an osteotome.

A thin bent Hohmann is placed into the lateral side to hold the patella in a subluxed position while a second Hohmann or a Z-retractor is placed along the medial border of the proximal tibia to protect the medial collateral ligament.

Note Excessive tension on the retractors is not necessary and can sometimes hamper the exposure.

The proximal soft tissue attachments extending around the proximal medial tibia are released in the standard fashion. Finally, excise the anterior cruciate ligament.

Note In patients with tight extensor mechanism (usually larger, muscular patients or those with abundant patellar osteophytes), the patella is cut at this time.
1 Attach the selected valgus angle bushing (5°, 6° or 7°) to the valgus alignment guide. Check the bushing position to make sure that ‘left’ is facing anteriorly when operating on a left knee and ‘right’ is facing anteriorly when operating on a right knee.

2 Attach a modular T-handle to the IM rod and insert through the alignment assembly (Figure 1).

3 Assemble the distal femoral cutting block onto the valgus alignment guide. Positioning the block at the ‘primary’ resection level will ensure the cut will equal the distal thickness of the femoral prosthesis. Lock by pressing the lever in a horizontal position toward the medial side.
1 Open the femoral canal with the 9.5mm Intramedullary Drill. The drill has a 12mm step to open the entry point further. If desired, use the drill to open the tibial canal at this step. (Figure 2).

Tip: If desired, the distal femoral cutting block may be set to resect an additional +2, +5 or +7mm of bone.

2 Slide the intramedullary rod of the assembly into the femoral canal until the alignment guide contacts the distal femur (Figure 3).

Tip: There may be times when only one side of the guide will touch bone.

3 Orient rotation of the assembly neutral to the posterior condyles (Figure 4) and impact one or both of the floating spikes into the distal femur.
Distal resection

1. Using non-headed SPEED PIN™, pin the distal femoral cutting block to the anterior femur using the holes marked ‘0’. Once adequate distal femoral resection is noted, an additional headed or non-headed SPEED PIN should be placed obliquely to provide additional stability (Figure 5).

2. Unlock the lever on the valgus alignment guide, remove the intramedullary rod and the valgus alignment assembly using the universal extractor (Figure 6). Only the distal femoral cutting block should remain on the femur.

3. Resect the distal femur (Figure 7) then remove the distal femoral cutting block.

Tip: If the distal femoral resection is not adequate, remove the oblique headed SPEED PIN, and reposition the block through the pin holes marked +2 or +4mm for the desired level of resection and re-insert the oblique pin.
Distal femoral resection continued

Sizing note
The JOURNEY® II Total Knee System femoral component features a proportional distal resection for the Standard and Large sizes (see table).

Use preoperative templating to estimate the femur size to determine the appropriate distal resection.

If the approximate size is between a size 8 and size 9, it is recommended to make the distal resection for the larger of the two sizes and proceed as normal.

The Distal Cutting Block is designed to remove 9.5mm off of the unaffected medial distal femur.

3 Resect the distal femur and then remove the Distal Femoral Cutting Block.

Note Femoral sizes 1-8 and 9-10 each have a separate spacer block to accommodate their different distal resection levels (see previous page).

Note If performing a BCS surgery and the PCL has not already been removed, excise completely the entire PCL attachment from the femoral intracondylar notch with either a cautery or scalpel. The femoral box prep will NOT completely detach all fibers of the PCL.
Instrument assembly

Extramedullary tibial alignment guide

Insert the ankle clamp into the distal end of the alignment tube and thread the locking pin into the ankle clamp (Figure 1).

After the ankle clamp is moved into the proper position, lock into place with the gold knob.

Choose the correct left or right tibial cutting block. Select the spiked or non-spiked fixation rod.

Non-spiked fixation rod

Place the appropriate left or right tibial cutting block on top of the disc on the non-spiked fixation rod (Figure 2). Tighten the central knob to lock the block into position.

Introduce the rod into the extramedullary assembly and adjust and lock the cam in the assembly.

Spiked fixation rod

Place the spiked fixation rod through the hole in the tibial cutting guide; adjust the block and tighten the central knob to lock the block into position.

Introduce the spiked fixation rod into the proximal end of the alignment assembly and adjust and lock the cam on the assembly (Figure 3).
EM tibial preparation

When using the extramedullary tibial alignment, the surgeon may use a non-spiked or spiked fixation rod.

Non-spiked fixation

1. Place the arms of the extramedullary alignment clamp around the ankle, and adjust the distal M/L slide directly over the middle of the tibiotalar joint, which is also approximated by the second ray of the foot proximal to the malleoli (Figure 4).

 The cutting block on the proximal end of the assembly should be proximal to the tibial tubercle (Figure 5).

2. Assess rotation of the alignment guide and slope of the cutting plane. The goal is to align the extramedullary alignment assembly rotationally so that it aligns over the medial third of the tibial tubercle and over the second toe (Figure 6).

3. Rotational alignment is critical due to the 3° posterior sloped cut. The slope can be adjusted according to the patient’s anatomy (Figure 7).

 Note: The tibial cutting block slot has 3° of posterior slope built into it. Having more than 3° of posterior slope is not recommended for the JOURNEY® II BCS knee prosthesis.

 Tip: Neutral or minimally sloped alignment may be achieved by palpating the fibula followed by aligning the alignment guide parallel to the fibula. Tibial bowing and soft tissue bulk may make external tibial referencing unreliable.
Spiked fixation

1 Place the arms of the extramedullary alignment clamp around the ankle, and adjust the distal M/L slide directly over the middle of the tibiotalar joint, which is also approximated by the second ray of the foot proximal to the malleoli (Figure 8).

The cutting block on the proximal end of the assembly should be proximal to the tibial tubercle (Figure 9).

2 Impact the longer spike of the spiked fixation rod into the proximal tibia (Figure 10).

3 Assess rotation of the alignment guide and slope of the cutting plane. The goal is to align the extramedullary alignment assembly rotationally so that it aligns over the medial third of the tibial tubercle and over the second toe (Figure 11).

4 Rotational alignment is critical due to the 3° posterior sloped cut. The slope can be adjusted according to the patient’s anatomy (Figure 12). Impact the second spike to secure the assembly (Figure 13).

Note: The tibial cutting block slot has 3° of posterior slope built into it. Having more than 3° of posterior slope is not recommended for the JOURNEY™ II BCS knee prosthesis.

Tip: Neutral or minimally sloped alignment may be achieved by palpating the fibula followed by aligning the alignment guide parallel to the fibula. Tibial bowing and soft tissue bulk may make external tibial referencing unreliable.

Ankle Clamp 7144-0444
Alignment Tube 7144-0448
Tibial Cutting Block Left 7144-1136
Right 7144-1137
Spiked Fixation Rod 7144-0198
Tibial resection

1. Attach the tibial stylus to the tibial cutting block by inserting the stylus foot into the cutting slot.

2. Lower the cutting block until the stylus touches the reference point on the least affected side of the tibia (Figure 14). The stylus can be adjusted for a 1-13mm tibial resection by twisting the knob on top of the stylus.

 Note The medial reference point is the sulcus of the concavity and the lateral reference point is the high point of the convexity. Always reference the tibial resection depth from the tibial compartment least affected by the arthritic process.

3. Pin the tibial cutting block to the tibia by inserting pins first through the central holes; then the oblique hole.

 Tip: Pinning through the central holes marked 0mm with smooth pins will allow the block to be moved +2mm should additional resection be required (Figure 15).

 Tip: The 9mm tibial implant is 9.5mm thick on the medial side and 12mm thick on the lateral side. It is recommended to remove the corresponding implant thickness from the unaffected side.

 Tip: To do an extramedullary alignment check, place the extramedullary alignment rod through the tibial cutting block.
4 To remove the assembly:
 a For the assembly with spiked rod, release the cam at the top of the alignment tube and use the slap hammer to remove the spiked fixation rod (Figure 16) after loosening the thumbscrew.

 b The assembly with the non-spiked rod may be left in place or removed by loosening the thumbscrew and lowering the non-spiked rod to disengage from the tibial cutting block.

5 Cut the tibia by first directing the blade in the posterior direction and then laterally (Figure 17).
Instrument assembly

Intramedullary tibial alignment guide

1. Insert the external rod of the Intramedullary tibial alignment guide through the hole on the correct left or right tibial cutting block and lock the cam (Figure 1).

2. Attach the T-handle to the IM rod and pass it through the cannulated alignment sleeve on the alignment assembly (Figure 2).
IM tibial preparation

1. Open the tibial canal with the 9.5mm Intramedullary Drill. The drill has a 12mm step to open the entry point further. (Figure 3). A preliminary resection of the tibial spine may facilitate seating of the tibial drill guide onto the proximal tibia.

2. Slowly insert the IM rod into the tibial canal.

3. Assess rotation of the intramedullary tibial alignment guide. Rotational alignment is critical due to the 3° posterior sloped cut. The alignment rod of the intramedullary tibial alignment assembly should align with the medial third of the tibial tubercle (Figure 4).

4. Impact the proximal end of the cannulated alignment sleeve to drive the distal spikes into the proximal tibia to lock rotational alignment (Figure 5).

IM Drill

7401-2111

IM Rod

- Long 7444-0004
- Short 7444-0006

IM Alignment Guide

7144-0200

Tibial Cutting Block

- Left 7144-1136
- Right 7144-1137
Tibial resection

1. Attach the tibial stylus to the tibial cutting block by inserting the stylus foot into the cutting slot.

2. Lower the cutting block until the stylus touches the reference point on the least affected side of the tibia (Figure 6). The stylus can be adjusted for a 1-13mm tibial resection by twisting the knob on top of the stylus.

 Note The medial reference point is the sulcus of the concavity and the lateral reference point is the high point of the convexity. Always reference the tibial resection depth from the tibial compartment least affected by the arthritic process.

3. Pin the tibial cutting block to the tibia by inserting pins first through the central holes; then the oblique hole.

 Tip: Pinning through the central holes marked 0mm with smooth pins will allow the block to be moved +2mm should additional resection be required (Figure 7).

 Tip: The 9mm tibial implant is 9.5mm thick on the medial side and 12mm thick on the lateral side. It is recommended to remove the corresponding implant thickness from the unaffected side.

 Tip: To do an extramedullary alignment check, place the extramedullary alignment rod through the tibial cutting block.
4 To remove the assembly:
Use the universal extractor leaving the cutting block on the anterior tibia (Figure 8) after loosening the thumbscrew.

5 Cut the tibia by first directing the blade in the posterior direction and then laterally (Figure 9).
Extension gap assessment

Note If performing a BCS surgery and the PCL has not already been removed, excise completely the entire PCL attachment from the femoral intracondylar notch with either a cautery or scalpel to prevent it from affecting the assessment. The femoral box prep will NOT completely detach all fibers of the PCL.

Note Assess the extension gap prior to making the posterior cut as removing the posterior condyles can relax the posterior tissue and create a false sense of increased extension laxity.

Ensure that all posterior osteophytes are removed prior to assessing the extension gap. Posterior osteophytes at this stage may result in inaccurate extension balance once all resections are performed.

1 Assemble the Quick Connect Handle to the appropriate size Flexion/Extension Block (available in Standard and Large). Attach the 10mm Flexion/Extension Spacer onto the Flexion/Extension Block.

2 The Flexion/Extension Block with 10mm spacer should easily insert into the extension gap.
 Note Use the 10mm Spacer as a gauge to ensure a minimum of 1mm of extension laxity.
 Note The Flexion/Extension Block with 10mm Spacer has a 20mm gap, which accommodates a standard size implant and 9mm insert (19mm) plus 1mm of laxity.

3 Adjust thickness of spacer (9mm, 11mm, 12mm, etc) as needed to determine the extension space.
 Note If the extension gap is too tight for a 9mm spacer, and the distal resection is through the deepest portion of the trochlear groove, resect additional tibia.
 Note The Extramedullary Alignment Rod can be inserted through the Quick Connect Handle to check limb alignment.

10mm flexion/extension spacer 7401-8610
Extramedullary Alignment Rod 114861
Flexion/extension block standard Size 1-8 7401-8603
Flexion/extension block large Size 9-10 7401-8609
Flexion gap assessment

Note If performing a BCS surgery and the PCL has not already been removed, excise the entire PCL attachment from the femoral intercondylar notch with either a cautery or scalpel as the PCL has been shown to alter the flexion assessment.

1. Assemble the Quick Connect Handle to the appropriate size Tibial Spacer Block (available in Narrow and Wide). Attach the 10mm Flexion/Extension Spacer onto the Tibial Spacer Block as was done in the extension assessment.

2. With the knee flexed to 90°, place the Tibial Spacer Block into the joint space allowing the flat plate to reference off of the cut tibial surface and the stepped, articular side to reference the native posterior femoral condyles.

3. Apply a varus/valgus force and assess the medial and lateral compartment laxity levels of the flexion space. Then adjust thickness of spacer (9mm, 11mm, 12mm, etc.) as needed to determine the flexion space.

4. When the flexion space is determined, compare the thickness selected relative to the extension space on the previous page.

Note Remember any difference between the Extension and Flexion Space Assessments as this will affect how the femoral implant is positioned in the steps ahead (e.g., 10mm Ext - 11mm Flex = -1mm Flex Imbalance).
Femoral positioning and sizing

1 Optional Mark the AP and epicondylar axis on the femur.

2 Place the (left or right) JOURNEY® II DCF Sizing Guide on the resected distal femur. With the medial paddle mated to the posterior medial condyle and the sizing guide flush to the distal resection, place a 45mm headed SPEED PIN® through the hole just above the medial paddle. This will secure the sizing guide for the remainder of its use.

 Note A Quick Connect Handle can aid with positioning the sizing guide.

3 If there exists a known flexion/extension imbalance, unlock, translate and relock the drill guide appropriately.

 Note For example, a 10mm extension space - an 11mm flexion space = -1mm imbalance. Therefore, the drill guide should be translated to the -1mm position.

 Note Do not translate the drill guide for anterior referencing. Anterior referencing, if desirable, is accomplished with the AP Cutting Block.

4 Ensure that the lateral paddle is mated to the posterior lateral condyle. Begin with the paddle set to 3°. Rotate away from 3° if it is desirable to match the AP or epicondylar axis or if it is desirable to balance the medial and lateral flexion gaps.

 Note Each degree of rotation away from 3° is approximately 1mm deviation away from the lateral condyle (e.g. at 6°, 3mm of implant material is added to the lateral flexion gap).

5 Once both the AP and rotational measures are desirable relative to the anatomic landmarks, drill about a 1 inch (25mm) deep hole through each of the two holes in the drill guide.
Finally, assemble the JOURNEY™ Sizing Stylus to the guide and estimate the AP femoral size. Position the stylus tip just lateral of the anterior trochlear sulcus. If desired, use the indicated size Femoral Trial to compare the ML width before selecting which size AP Cutting Block to use.

Design note The JOURNEY II DCF Sizing Guide is designed to reference the posterior condyles. At 3° the guide will make AP resections at 3° externally rotated from the posterior condylar axis. The guide also allows for rotation between 0° and 6° relative to the posterior condylar axis.
Femoral AP and chamfer resections instrument

1. Position the spikes on the DCF AP Femoral Block into the predrilled holes. Use the Mallet to impact the AP Block assembly until the block is flush with the resected distal femur. Remove the AP Block Impactor.

 Note The posterior resection will match the implant thickness when the highlighted indicator in the AP Block knob is aligned with “Post. Ref”.

 Note The AP Femoral Cutting Block allows adjustment of up to 2mm either anteriorly or posteriorly.

2. Use the Angel Wing to check the location of the anterior cutting slot. Make any necessary anterior/posterior adjustments to avoid overstuffing the patella femoral joint, overstuffing the flexion space or femoral notching.

 Note If 2mm upshift is not enough to avoid notching, select the next largest AP cutting block size and adjust until notching is avoided.

Design note The difference between JOURNEY® II TKA femoral implant sizes is 3mm on average.
3 Use two 45mm rimmed SPEED PIN™ through the medial and lateral fixation holes on the cutting block.

Note Any bone spikes placed in either the medial or lateral anterior spike holes should be removed before making the anterior chamfer resection.

4 Complete the cuts in the order indicated on the block:
 1 Anterior
 2 Anterior Chord
 3 Posterior
 4 Posterior Chamfer
 5 Anterior Chamfer

Note While performing the posterior and posterior chamfer resections use careful placement of retractors to protect the Popliteus Tendon attachments to the femur. Releasing the Popliteus Tendon can destabilize the knee laterally in flexion.
1. Assemble the Quick Connect Handle to the appropriate size Flexion/Extension Block (available in Standard and Large). Attach the 10mm Flexion/Extension Spacer into the Flexion/Extension Block.

2. The Flexion/Extension Block with 10mm Spacer should easily insert into the flexion gap.

 Note Use the 10mm Spacer as a gauge to ensure a minimum of 1mm of flexion laxity.

 Note The Flexion/Extension Block with 10mm Spacer has a 20mm gap, which accommodates a standard size implant and 9mm insert (19mm) plus 1mm of laxity.

3. If the 10mm Spacer Block goes in tight in flexion and loose in extension, consider downsizing the femur.

 If the 10mm spacer block goes in tight in flexion and extension, consider taking 2mm more tibia.

Resected flexion gap assessment
Downsizing femoral component

1 Place the smaller DCF AP Block into the pre-drilled holes. Turn the center knob of the AP Block until either the anterior resection cutting slot is aligned with the anterior resection or positioned as desired. This can be verified using the JOURNEY™ resection check.

2 Secure the AP Block to the distal femur and remake the cuts as indicated on the block: anterior, anterior chord, posterior, posterior chamfer and anterior chamfer.

Additional distal resection

1 If the pre-drilled holes in the anterior cortex can be located, place two non-headed SPEED PIN™ into the anterior femur. Place the Distal Cutting Block over the non-headed speed pins through the spike holes at the desired resection level.

2 If the pre-drilled holes cannot be found, place the JOURNEY resection check through the Distal Block resection slot and position the Plate onto the distal resection. Pin the Distal Block through the “0” holes. Remove the JOURNEY resection check and then shift the block to the desired resection level, pin obliquely and remake the distal resection.

3 Place the AP Cutting Block into the pre-drilled holes on the distal resection. Turn the center knob of the AP Block until the anterior resection cutting slot is aligned with the anterior resection. This can be verified using the JOURNEY resection check.

Note Due to the flexed posterior resections taking more distal resection will create a small gap posteriorly (i.e. 0.5mm gap for 2mm additional distal resection). Some surgeons will look to move the AP Cutting Block 1mm anteriorly to move the gap to the anterior cortex.

4 Secure the AP Cutting Block to the distal femur and remake the cuts as indicated on the block: anterior, anterior chord, posterior, posterior chamfer and anterior chamfer.
Patellar preparation

The recommended time to prepare the patella is after all tibial and femoral cuts are made, but prior to trial placement. In some cases, the patella is cut just after the arthrotomy to facilitate exposure.

Evert the patella, or at least partially evert the patella to 90, measure its thickness and determine the appropriate diameter implant.

1. Attach the Patella Reamer Guide to the patella and tighten the reamer guide on the patella.
2. Use the Patella Calipers to measure the patella thickness through the collet and guide.
3. Attach the Patella Reamer Shaft assembly to the drill and lower the reamer through the Patellar Reamer Guide until the reamer dome contacts the patella.
4. Swing the Patellar Depth Gauge around so that the “claw” contact surrounds the Patellar Reamer Shaft.
5. Lower the Patellar Depth Stop until it contacts the Patellar Depth Gauge.
6. Remove the Depth Gauge.
7 Ream the patella until the Patellar Depth Stop engages the Patella Reamer Collet. Remove the reamer assembly from the Patella Reamer Collet and remove any loose material from the patella.

Biconvex (inset) patella

8 If the Biconvex design is selected, use a towel clip to insert the appropriate diameter Biconvex Patella Trial into the recess in the patella. Use the Patella Caliper to reassess the patella thickness. If the desired thickness is achieved, remove the Patella Reamer Guide Assembly from the patella.

Note To decrease the patella thickness further, depress the button on the depth stop to raise it on the Patella Reamer Shaft. Each tooth adjustment will ream an additional 1mm. Engage the Patella Reamer back into the Patella Reamer Collet and ream the patella until the Patellar Depth Stop engages the Patella Reamer Collet.
Resurfacing (onset) patella

8 If the Resurfacing design is selected, use the Patella Caliper to reassess the patella thickness. If the desired thickness is achieved, remove the Patella Reamer Guide Assembly from the patella.

Note To decrease the patella thickness further, depress the button on the Patellar Depth Stop to raise it on the Patella Reamer Shaft. Each tooth adjustment will ream an additional 1mm. Engage the Patella Reamer back into the Patella Reamer Collet and ream the patella until the depth stop engages the Patella Reamer Collet.

9 Remove the Patella Reamer Collet from the Patella Reamer Guide.

10 Select the appropriate diameter Resurfacing Patella Drill Guide and slide it onto the Patella Reamer Guide. Attach the Patella Reamer Guide Assembly to the reamed patella and tighten the reamer guide on the patella.

11 Use the Patella Peg Drill to drill the three pegs through the Patella Drill Guide until the drill bottoms out in the guide.

12 Remove the Patella Reamer Guide and drill guide from the patella.

13 Place the Resurfacing Patellar Trial onto the resected patella. Use the Patella Caliper to reassess the patella thickness.

Note: All GII patellas are cleared for use with JOURNEY® II Total Knee System.
1 Measure the overall thickness of the patella with the Patellar Caliper.

2 Subtract from this number the thickness of the JOURNEY® Resurfacing Patellar Component, which is 9mm.

3 The Patella Resection Guide should be set at the amount of bone that should remain after cutting the patella – i.e., the difference between the original patellar thickness and the thickness of the resurfacing patella. The guide is set at this level by turning the knurled knob.

For example

A Measure the overall thickness of the patella with the Patellar Caliper. For this example, the patella measures 25mm.

B Subtract the thickness of the Resurfacing Patellar Component. In this example, 9mm (25mm - 9mm = 16mm). The guide should be set at 16mm for this example

4 Cut the patella through the dedicated saw guides.

5 Select the appropriate diameter Resurfacing Patella Drill Guide and slide it onto the Patella Reamer Guide. Attach the Patella Reamer Guide Assembly to the resected patella and tighten the reamer guide on the patella.

6 Use the Patella Peg Drill to drill for the three peg holes through the Patella Drill Guide until the drill bottoms out in the guide.

7 Remove the Patella Reamer Guide and Drill Guide from the patella.

8 Place the Resurfacing Patellar Trial onto the resected patella. Use the Patella Caliper to reassess the patella thickness.
JOURNEY® II BCS box preparation

1. Select the baseplate trial based upon best fit and coverage on the resected tibia. Set position of the tibial baseplate based upon the anatomic landmarks of the tibia (best fit and coverage and medial 1/3 of the tubercle). Pin the baseplate using two 30mm rimmed SPEED PIN®.

 Note Alternatively, you can use the GENESIS® II stemmed baseplate trials.

2. Place the Femoral Trial onto the femur by positioning the proximal edge of the posterior condyles at the proximal end of the posterior resection.

3. Impact on the angled surface of the Femoral Trial Impactor to rotate the Femoral Trial from posterior to anterior until the distal surface is completely flush with the distal resection.

4. Place the Short Bone Spikes in the anterior flange to secure the Femoral Trial to the femur. Loosen the lock knob of the Femoral Trial Impactor and remove anteriorly, leaving the trial in place.

5. Insert the appropriate size JOURNEY II BCS Collet into the T-slot of the Femoral Trial from the anterior side until the pegs on the Collet engage in the Femoral Trial.

 Note If the pegs on the Collet do not automatically engage, apply hand pressure down to manually engage pegs.
6 Insert the Reamer into the BCS Collet and ream first anteriorly and then posteriorly. If the power equipment has “Drill” and “Reamer” settings, ensure that the “Drill” setting is selected and allow the Reamer to reach maximum speed before engaging the bone.

7 Insert the Chisel into the anterior chisel guide. Impact the Chisel through the guide until flush with the Collet. Repeat punching using posterior guide.

8 Remove the BCS Collet by lifting up on the outside casing to disengage the pegs and sliding anteriorly.

9 Remove any remaining bone debris within the box preparation area.

10 Position the anterior tabs of the JOURNEY® II BCS Box Trial into the Femoral Trial’s anterior recess and rotate the Box Trial posteriorly until the Femoral Trial detents have secured the Box Trial.
Femoral and tibial trialing

1 Place the appropriate size and desired thickness Articular Insert Trial onto the Tibial Trial.

Note Placing the insert trial into the trial baseplate can be difficult because of the high medial posterior lip of the insert. The best technique is to flex the knee to 120°, push in the insert as far as possible and bring the leg out into full extension.

Note To trial thicknesses 13mm and higher, assemble the appropriate thickness Articular Insert Spacer Trial with the 9mm Articular Insert Trial.

2 Perform trial range of motion and assess laxity and balance. The knee should drop passively into full extension. Under varus/valgus stress, there should be approximately 1-2mm of gapping both medially and laterally throughout the range-of-motion. There should be *no* increase in resistance as the knee flexes from 0° to 90°. If the knee is too tight, try a thinner insert or resect more tibia.

Tip Under full varus or valgus stress, the gapping should be at least the width of a cautery tip (~2mm).

3 Once the trial assessment is completed and the correct insert thickness has been determined then take the leg into full extension. Use a cautery to mark the location of the laser etch lines on the anterior cortex of the tibia to reference the baseplate rotation.

Note In most cases, rotational alignment of the tibial baseplate based upon best fit and coverage, medial ½ of the tubercle and the cautery mark will all match.
4 Once the trial assessment is complete and final implant sites determined remove the insert trial and femoral trial.

5 Fin punch through the baseplate with the appropriate size punch, remove the two short bone spikes with the JOURNEY™ II TKA Removal Tool and remove the baseplate trial.

Note If a constrained insert has been selected, the patient should have good femoral bone quality and a tibial stem is recommended.

Stem/fim punch
7144-9993

Femoral trial and cam extractor
7401-2825
Final implantation and closure

Tibial component

1. Maximally flex the knee and place a thin bent Hohmann laterally and medially and an Aufranc Retractor posteriorly to sublux the tibia forward.

2. Suction the keel prep hole and avoid contaminating the implant cement interface surface with fat or other fluids prior to cement application.

3. Apply generous amounts of cement to the dry underside of the baseplate, keel and into the keel prep hole.

4. Use the Tibial Implant Impactor and Mallet to fully seat the Tibial Baseplate Component onto the proximal tibia.

5. Remove excess cement.

Femoral component

Instrument assembly

A. Assemble the Femoral Implant Impactor Bumper (available in Left and Right) onto the Femoral Implant Impactor.

B. Unthread the lock knob completely.

C. Press the thumb lever on the posterior side on the Femoral Implant Impactor and push the dual arm mechanism upwards.

D. Position the taller arm inside the posterior cam of the femoral component and rotate the shorter arm onto the anterior cam. Release the thumb lever.

E. Thread the lock knob until hand tight.
1. Flex the knee to 90° keeping the thin bent Hohmann laterally and removing the Aufranc Retractor.

2. Mix and prepare bone cement for femoral component and distal femur.

 Note Care should be taken to avoid excess cement on the posterior aspect of the femur and femoral component. Excess cement that extrudes posteriorly is difficult to remove.

3. Place the appropriate size Tibial Baseplate Cover onto the Tibial Component to protect it during Femoral Component implantation.

4. Place the Femoral Component onto the femur by positioning the proximal edge of the posterior condyles at the proximal end of the posterior resection.

 Note Care should be taken when reverse impacting if implant removal is necessary.

5. Impact on the angled surface of the Femoral Implant Impactor to rotate the Femoral Component from posterior to anterior until the distal surface is completely flush with the distal resection.

6. Unthread the lock knob completely. Rotate the Femoral Implant Impactor posteriorly to disengage it from the Femoral Component.

7. Remove excess cement giving particular care to remove cement along the proximal portion of the femoral cam.

8. Extend the knee to remove cement anteriorly without retracting the proximal soft tissue.

 Radiographic note The JOURNEY II Total Knee System features an anatomical joint line in the AP view. The distal condyles of the Femoral Component will present a 3° varus angle relative to the Tibial Component when correctly aligned.

Tibial baseplate cover
7401-8823
1 Select the baseplate trial based upon best fit and coverage on the resected tibia. Set position of the tibial baseplate based upon the anatomic landmarks of the tibia (best fit and coverage and medial 1/3 of the tubercle). Pin the baseplate using two 30mm rimmed SPEED PIN®.

Note Alternatively, you can use the GENESIS II stemmed baseplate trials.

2 Place the Femoral Trial onto the femur by positioning the proximal edge of the posterior condyles at the proximal end of the posterior resection.

3 Impact on the angled surface of the Femoral Trial Impactor to rotate the Femoral Trial from posterior to anterior until the distal surface is completely flush with the distal resection.

4 Place the 30mm SPEED PIN in the anterior flange to secure the Femoral Trial to the femur. Loosen the lock knob of the Femoral Trial Impactor and remove anteriorly, leaving the trial in place.

5 Using the angled face on the femoral trial as the guide, remove the anterior intercondylar femoral bone using a narrow sawblade.

6 Select the appropriate size CR notch trial and engage the anterior portion of the notch trial first. Then use the femoral implant impactor to impact the posterior portion of the notch trial until it sits flush with the femoral trial.

7 Use the lug drill to prepare for the femoral lugs by drilling to the bottom of both distal holes in the femoral trial. Remove the femoral trial.
Femoral and tibial trialing

1 Place the appropriate size and desired thickness Articular Insert Trial onto the Tibial Trial.

Note Placing the insert trial into the trial baseplate can be difficult because of the high medial posterior lip of the insert. The best technique is to flex the knee to 120°, push in the insert as far as possible and bring the leg out into full extension.

Note To trial thicknesses 13mm and higher, assemble the appropriate thickness Articular Insert Spacer Trial with the 9mm Articular Insert Trial.

2 Perform trial range of motion and assess laxity and balance. The knee should drop passively into full extension. Under varus/valgus stress, there should be approximately 1-2mm of gapping both medially and laterally throughout the range-of-motion. There should be no increase in resistance as the knee flexes from 0° to 90°. If the knee is too tight, try a thinner insert or resect more tibia.

Tip Under full varus or valgus stress, the gapping should be at least the width of a cautery tip (~2mm).

3 Once the trial assessment is completed and the correct insert thickness has been determined then take the leg into full extension. Use a cautery to mark the location of the laser etch lines on the anterior cortex of the tibia to reference the baseplate rotation.

Note In most cases, rotational alignment of the tibial baseplate based upon best fit and coverage, medial ⅔ of the tubercle and the cautery mark will all match.

Tibial trial
7143-0167

Articular insert trial
7403-3641
4 Once the trial assessment is complete and final implant sites determined remove the insert trial and femoral trial.

5 Fin punch through the baseplate with the appropriate size punch, remove the two headed pins with the JOURNEY™ II TKA Removal Tool and remove the baseplate trial.

Stem/fi punch
7144-9993

Femoral trial and cam extractor
7401-2825
Final implantation and closure

Tibial component

1. Maximally flex the knee and place a thin bent Hohmann laterally and medially and an Aufranc Retractor posteriorly to sublux the tibia forward.

2. Suction the keel prep hole and avoid contaminating the implant cement interface surface with fat or other fluids prior to cement application.

3. Apply generous amounts of cement to the dry underside of the baseplate, keel and into the keel prep hole.

4. Use the Tibial Implant Impactor and Mallet to fully seat the Tibial Baseplate Component onto the proximal tibia.

5. Remove excess cement.

Femoral component

Instrument assembly

A. Assemble the femoral implant impactor bumper (available in left and right) onto the femoral implant impactor.

B. Unlock the knob completely.

C. Press the thumb slide on the femoral implant impactor to push the dual arm mechanism upwards.

D. Position the arms inside the intercondylar notch of the femoral component and release the thumb slide. Make sure the tips of the arms are sitting flush in the crescent shaped grooves on the femoral component.

E. Lock the knob until hand tight.
1 Flex the knee to 90° keeping the thin bent Hohmann laterally and removing the Aufranc Retractor.

2 Mix and prepare bone cement for femoral component and distal femur.

 Note Care should be taken to avoid excess cement on the posterior aspect of the femur and femoral component. Excess cement that extrudes posteriorly is difficult to remove.

3 Place the appropriate size Tibial Baseplate Cover onto the Tibial Component to protect it during Femoral Component implantation.

4 Place the Femoral Component onto the femur by positioning the proximal edge of the posterior condyles at the distal end of the posterior resection and rotating the Femoral Component to align the tips of the lugs to the prepared lug holes in the femur.

 Note Care should be taken when reverse impacting if implant removal is necessary.

5 Impact the Femoral Implant Impactor until the distal surface is completely flush with the distal resection.

6 Unlock the knob completely. Use the thumb slide to disengage the Femoral Impactor from the Femoral Component.

7 Remove excess cement.

8 Extend the knee to remove cement anteriorly without retracting the proximal soft tissue.

 Radiographic note The JOURNEY™ II Total Knee System features an anatomical joint line in the AP view. The distal condyles of the Femoral Component will present a 3º varus angle relative to the Tibial Component when correctly aligned.
JOURNEYo II TKA articular insert

1. Clear any debris from the locking mechanism.

2. Manually slide the insert into the tibial baseplate engaging the locking mechanism until the insert periphery is within 1-2mm of the Tibial Component periphery.

 \textbf{Note} The articular insert can be difficult to insert because of the high medial posterior lip. The best technique is to flex the knee to 110°, push in the insert as far as possible and bring the leg out into full extension. Externally rotating the tibial in flexion can also help with getting in the insert.

3. Insert the tip of the Articular Insert Assembly Tool into the center notch of the anterior lock detail (handle up) and engage the two tabs of the Tool into the two recesses on the anterior periphery of the insert.

 \textbf{Note} Make sure the tool is level with the plane of the baseplate.

4. Squeeze the tool handle until the insert is fully seated within the Tibial Component. The insert should not move under any pressure in flexion or extension.

Patellar component

1. Assemble the Patellar Cement Clamp to the Patellar Reamer Guide.

2. Apply bone cement to the reamed patella.

3. Place the patellar implant onto the prepared patella.

4. Clamp the patellar implant into the bone and remove the extruded cement.
Closure

1 Close the arthrotomy by placing three O-Vicryl sutures at the superior border of the patella just distal to the VMO. A stitch is placed to close the VMO fascia. The remainder of the arthrotomy is closed in the standard fashion.

2 Perform routine subcutaneous and skin closure.

Tip Some surgeons are finding that closing the knee in flexion improves early rehab in patients.
JOURNEY® II BCS Specifications

Femoral component dimensions (mm)

Tibial baseplate dimensions (mm)

Note: Stem sloped 3° posteriorly. Stem length is 50mm on all nonporous sizes.
JOURNEY™ II CR Specifications

Femoral component dimensions (mm)

<table>
<thead>
<tr>
<th>Size</th>
<th>A (mm)</th>
<th>B (mm)</th>
<th>C (mm)</th>
<th>D (mm)</th>
<th>E (mm)</th>
<th>F (mm)</th>
<th>G (mm)</th>
<th>H (mm)</th>
<th>J (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>51.7</td>
<td>59.0</td>
<td>19</td>
<td>1.7</td>
<td>49.5</td>
<td>9.5</td>
<td>7</td>
<td>9</td>
<td>7.4</td>
</tr>
<tr>
<td>2</td>
<td>53.7</td>
<td>60.0</td>
<td>19</td>
<td>1.7</td>
<td>50.7</td>
<td>9.5</td>
<td>7</td>
<td>9</td>
<td>7.4</td>
</tr>
<tr>
<td>3</td>
<td>56.7</td>
<td>61.5</td>
<td>19</td>
<td>1.7</td>
<td>52.5</td>
<td>9.5</td>
<td>7</td>
<td>9</td>
<td>7.4</td>
</tr>
<tr>
<td>4</td>
<td>59.7</td>
<td>64.5</td>
<td>19</td>
<td>1.7</td>
<td>54.3</td>
<td>9.5</td>
<td>7</td>
<td>9</td>
<td>7.4</td>
</tr>
<tr>
<td>5</td>
<td>62.7</td>
<td>67.5</td>
<td>19</td>
<td>1.7</td>
<td>56.0</td>
<td>9.5</td>
<td>7</td>
<td>9</td>
<td>7.4</td>
</tr>
<tr>
<td>6</td>
<td>65.7</td>
<td>70.5</td>
<td>19</td>
<td>1.8</td>
<td>57.7</td>
<td>9.5</td>
<td>7</td>
<td>9</td>
<td>7.4</td>
</tr>
<tr>
<td>7</td>
<td>68.8</td>
<td>73.5</td>
<td>19</td>
<td>1.8</td>
<td>59.5</td>
<td>9.5</td>
<td>7</td>
<td>9</td>
<td>7.4</td>
</tr>
<tr>
<td>8</td>
<td>71.8</td>
<td>76.0</td>
<td>19</td>
<td>1.8</td>
<td>61.2</td>
<td>9.5</td>
<td>7</td>
<td>9</td>
<td>7.4</td>
</tr>
<tr>
<td>9</td>
<td>75.8</td>
<td>80.0</td>
<td>19</td>
<td>1.8</td>
<td>63.5</td>
<td>11.5</td>
<td>9</td>
<td>11</td>
<td>9.4</td>
</tr>
<tr>
<td>10</td>
<td>79.8</td>
<td>82.0</td>
<td>19</td>
<td>1.8</td>
<td>65.7</td>
<td>11.5</td>
<td>9</td>
<td>11</td>
<td>9.4</td>
</tr>
</tbody>
</table>

Tibial baseplate dimensions (mm)

<table>
<thead>
<tr>
<th>Size</th>
<th>AP (mm)</th>
<th>ML (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>45</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>48</td>
<td>68</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>71</td>
</tr>
<tr>
<td>5</td>
<td>52</td>
<td>74</td>
</tr>
<tr>
<td>6</td>
<td>54</td>
<td>77</td>
</tr>
<tr>
<td>7</td>
<td>56</td>
<td>81</td>
</tr>
<tr>
<td>8</td>
<td>59</td>
<td>85</td>
</tr>
</tbody>
</table>

Note Stem sloped 3° posteriorly. Stem length is 50mm on all nonporous sizes.
Patellar dimensions biconvex (mm)

<table>
<thead>
<tr>
<th>Size</th>
<th>Diameter</th>
<th>Thickness</th>
<th>Peg Height</th>
<th>Peg Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>23mm Std</td>
<td>23</td>
<td>13</td>
<td>4.1</td>
<td>4.7</td>
</tr>
<tr>
<td>26mm Std</td>
<td>26</td>
<td>13</td>
<td>4.1</td>
<td>4.7</td>
</tr>
<tr>
<td>29mm Std</td>
<td>29</td>
<td>13</td>
<td>3.1</td>
<td>4.7</td>
</tr>
<tr>
<td>32mm Std</td>
<td>32</td>
<td>13</td>
<td>3.1</td>
<td>4.7</td>
</tr>
</tbody>
</table>

Patellar dimensions resurfacing (mm)

<table>
<thead>
<tr>
<th>Size</th>
<th>Diameter</th>
<th>Thickness</th>
<th>Peg Height</th>
<th>Peg Diameter</th>
<th>Peg Circle Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>26mm Std</td>
<td>26</td>
<td>9</td>
<td>4.4</td>
<td>5.1</td>
<td>15.3</td>
</tr>
<tr>
<td>29mm Std</td>
<td>29</td>
<td>9</td>
<td>4.4</td>
<td>5.1</td>
<td>15.3</td>
</tr>
<tr>
<td>32mm Std</td>
<td>32</td>
<td>9</td>
<td>4.4</td>
<td>5.1</td>
<td>15.3</td>
</tr>
<tr>
<td>35mm Std</td>
<td>35</td>
<td>9</td>
<td>4.4</td>
<td>5.1</td>
<td>17.9</td>
</tr>
<tr>
<td>38mm Std</td>
<td>38</td>
<td>9</td>
<td>4.4</td>
<td>5.1</td>
<td>17.9</td>
</tr>
<tr>
<td>41mm Std</td>
<td>41</td>
<td>9</td>
<td>4.4</td>
<td>5.1</td>
<td>17.9</td>
</tr>
</tbody>
</table>
JOURNEY™ II BCS articular insert dimensions (mm)

Insert offering / compatibility

<table>
<thead>
<tr>
<th>9mm Insert</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size 1-2</td>
<td>42</td>
<td>60</td>
<td>9.6</td>
<td>11.9</td>
<td>34.1</td>
</tr>
<tr>
<td>Size 3-4</td>
<td>48</td>
<td>68</td>
<td>9.6</td>
<td>11.6</td>
<td>35.1</td>
</tr>
<tr>
<td>Size 5-6</td>
<td>52</td>
<td>74</td>
<td>9.6</td>
<td>11.9</td>
<td>38.6</td>
</tr>
<tr>
<td>Size 7-8</td>
<td>56</td>
<td>81</td>
<td>9.6</td>
<td>11.9</td>
<td>40.1</td>
</tr>
</tbody>
</table>

Minimum polyethylene thickness for a 9mm metal-backed component is 6.7mm on the medial side.

* Baseplate thickness included.
JOURNEY™ II CR articular insert dimensions (mm)

<table>
<thead>
<tr>
<th>Insert Size</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size 1-2</td>
<td>42</td>
<td>60</td>
<td>9.6</td>
<td>11.6</td>
</tr>
<tr>
<td>Size 3-4</td>
<td>48</td>
<td>68</td>
<td>9.6</td>
<td>11.6</td>
</tr>
<tr>
<td>Size 5-6</td>
<td>52</td>
<td>74</td>
<td>9.6</td>
<td>11.6</td>
</tr>
<tr>
<td>Size 7-8</td>
<td>56</td>
<td>81</td>
<td>9.6</td>
<td>11.6</td>
</tr>
</tbody>
</table>

Minimum polyethylene thickness for a 9mm metal-backed component is 6.7mm on the medial side.

* Baseplate thickness included.

JOURNEY II CR insert compatibility

Completely interchangeable with all size femoral components

Deep Dished Insert offering / compatibility

<table>
<thead>
<tr>
<th>Femoral Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert Size</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1-2</td>
</tr>
<tr>
<td>3-4</td>
</tr>
<tr>
<td>5-6</td>
</tr>
<tr>
<td>7-8</td>
</tr>
</tbody>
</table>

Femoral Size

A

B

C

D

E

Anterior

Medial

Lateral

Medial Thickness

Lateral Thickness

Medial Anterior Thickness

Lateral Anterior Thickness

9mm Deep Dished Insert

<table>
<thead>
<tr>
<th>Insert Size</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size 1-2</td>
<td>42</td>
<td>60</td>
<td>9.6</td>
<td>12.1</td>
<td>16.9</td>
</tr>
<tr>
<td>Size 3-4</td>
<td>48</td>
<td>68</td>
<td>9.6</td>
<td>12.1</td>
<td>18.1</td>
</tr>
<tr>
<td>Size 5-6</td>
<td>52</td>
<td>74</td>
<td>9.6</td>
<td>12.1</td>
<td>19.3</td>
</tr>
<tr>
<td>Size 7-8</td>
<td>56</td>
<td>81</td>
<td>9.6</td>
<td>12.1</td>
<td>19.9</td>
</tr>
</tbody>
</table>
7144-0843 Universal Tray – 1

Catalog Item	Description	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	
114861	EXTRAMEDULLARY ALIGNMENT ROD	A																				
115035	HEX SCREWDRIVER	B																				
71440020	GENESIS II NARROW PCL RETRACTOR	C																				
71440040	GENESIS II 11mm TIBIAL DRILL	D																				
71440044	GENESIS II QUICK CONNECT HANDLE	E																				
71440366	GENESIS II UNIVERSAL EXTRACTOR	F																				
71440491	UNIVERSAL PIN PULLER	G																				
71441136	GENESIS II MIS SLOTTED 3 DEG MOD TIB CUT BLOCK LT	I																				
71441137	GENESIS II MIS SLOTTED 3 DEG MOD TIB CUT BLOCK RT	J																				
71441147	GENESIS II MIS DCF DISTAL CUTTING BLOCK	K																				

7144-0844 Universal Tray – 2

Catalog Item	Description	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	
71110080	QUICK RELEASE T-HANDLE	A																				
71440014	GENESIS II FEMORAL 5° VALGUS BUSHING	B																				
71440016	GENESIS II FEMORAL 6° VALGUS BUSHING	C																				
71440018	GENESIS II FEMORAL 7° VALGUS BUSHING	D																				
71440198	GENESIS II TIBIAL ALIGNMENT SPIKED FIX ROD	E																				
71440200	GENESIS II INTRAMEDULLARY TIBIAL ALIGNMENT	F																				
71440446	GENESIS II NON SPIKE FIXATION ROD	G																				
71440448	GENESIS II TIBIAL ALIGNMENT TUBE	H																				

Notes
- **A**: EXTRAMEDULLARY ALIGNMENT ROD
- **B**: HEX SCREWDRIVER
- **C**: GENESIS II NARROW PCL RETRACTOR
- **D**: GENESIS II 11mm TIBIAL DRILL
- **E**: GENESIS II QUICK CONNECT HANDLE
- **F**: GENESIS II ARTICULATING INSERTER/EXTRACTOR
- **G**: GENESIS II UNIVERSAL EXTRACTOR
- **H**: UNIVERSAL PIN PULLER
- **I**: GENESIS II MIS SLOTTED 3 DEG MOD TIB CUT BLOCK LT
- **J**: GENESIS II MIS SLOTTED 3 DEG MOD TIB CUT BLOCK RT
- **K**: GENESIS II MIS DCF DISTAL CUTTING BLOCK
- **L**: UNIVERSAL PIN DRIVER
- **M**: JOURNEY RESECTION CHECK
- **N**: SPEED PIN QUICK CONNECT ADAPTER
- **O**: JOURNEY TIBIAL BASEPLATE COVER SZ 1-2
- **P**: JOURNEY TIBIAL BASEPLATE COVER SZ 3-4
- **Q**: JOURNEY TIBIAL BASEPLATE COVER SZ 5-6
- **R**: JOURNEY TIBIAL BASEPLATE COVER SZ 7-8
- **S**: JOURNEY TIBIAL IMPLANT IMPACTOR
- **T**: JOURNEY ARTICULAR INSERT ASSEMBLY TOOL
- **U**: VISIONAIRE ALIGNMENT CHECKER
<table>
<thead>
<tr>
<th>Catalog Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7401-0084</td>
<td>JOURNEY™ II TKA Impactor and Finishing Tray</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7144045</td>
<td>GENESIS™ II P/S CONSTRAINED SYSTEM HOUSING REAMER DOME</td>
</tr>
<tr>
<td>71440324</td>
<td>GENESIS II PATELLAR REAMER SHAFT</td>
</tr>
<tr>
<td>71440373</td>
<td>BOX CHISEL</td>
</tr>
<tr>
<td>7401855</td>
<td>JOURNEY II CR FEMORAL LUG DRILL</td>
</tr>
<tr>
<td>7401871</td>
<td>JOURNEY II CR LOCKING FEMORAL IMPLANT IMPACTOR</td>
</tr>
<tr>
<td>7401821</td>
<td>JOURNEY FEMORAL IMPLANT IMPACTOR BUMPER RIGHT</td>
</tr>
<tr>
<td>7401856</td>
<td>JOURNEY II CR LOCKING FEMORAL IMPLANT IMPACTOR BUMPER LEFT</td>
</tr>
<tr>
<td>7401857</td>
<td>JOURNEY II CR LOCKING FEMORAL IMPLANT IMPACTOR BUMPER RIGHT</td>
</tr>
<tr>
<td>7401821</td>
<td>JOURNEY AP CUTTING BLOCK IMPACTOR</td>
</tr>
<tr>
<td>7401855</td>
<td>JOURNEY II TKA FEMORAL SIZING GUIDE LEFT</td>
</tr>
<tr>
<td>7401856</td>
<td>JOURNEY II TKA FEMORAL SIZING GUIDE RIGHT</td>
</tr>
<tr>
<td>7401857</td>
<td>JOURNEY II TKA FEMORAL SIZING STYLS</td>
</tr>
<tr>
<td>7401825</td>
<td>JOURNEY FEMORAL TRIAL IMPACTOR SZ 1-10</td>
</tr>
<tr>
<td>7401827</td>
<td>JOURNEY II BCS FEMORAL BOX PREP GUIDE SZ 3-5</td>
</tr>
<tr>
<td>7401828</td>
<td>JOURNEY II BCS FEMORAL BOX PREP GUIDE SZ 6-8</td>
</tr>
<tr>
<td>7401829</td>
<td>TIBIAL SPACER BLOCK STANDARD</td>
</tr>
<tr>
<td>7401822</td>
<td>JOURNEY II BCS LOCKING FEMORAL IMPLANT IMPACTOR</td>
</tr>
<tr>
<td>7401822</td>
<td>JOURNEY FEMORAL IMPLANT IMPACTOR BUMPER LEFT</td>
</tr>
<tr>
<td>7401822</td>
<td>JOURNEY FEMORAL IMPLANT IMPACTOR BUMPER LEFT</td>
</tr>
<tr>
<td>7401822</td>
<td>JOURNEY II REMOVAL TOOL</td>
</tr>
<tr>
<td>7401828</td>
<td>JOURNEY FLEXION EXTENSION BLOCK STANDARD</td>
</tr>
<tr>
<td>7401828</td>
<td>JOURNEY FLEXION EXTENSION SPACER 9mm</td>
</tr>
<tr>
<td>7401828</td>
<td>JOURNEY FLEXION EXTENSION SPACER 10mm</td>
</tr>
<tr>
<td>7401828</td>
<td>JOURNEY FLEXION EXTENSION SPACER 11mm</td>
</tr>
<tr>
<td>7401828</td>
<td>JOURNEY FLEXION EXTENSION SPACER 12mm</td>
</tr>
<tr>
<td>7401828</td>
<td>JOURNEY FLEXION EXTENSION SPACER 13mm</td>
</tr>
<tr>
<td>7401828</td>
<td>JOURNEY FLEXION EXTENSION SPACER 15mm</td>
</tr>
<tr>
<td>7401828</td>
<td>JOURNEY FLEXION EXTENSION SPACER 18mm</td>
</tr>
<tr>
<td>7401828</td>
<td>JOURNEY FLEXION EXTENSION SPACER 21mm</td>
</tr>
</tbody>
</table>
7401-0102 JOURNEY® II Patella Tray

<table>
<thead>
<tr>
<th>Catalog Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>114943</td>
<td>GENESIS® CALIPER A</td>
</tr>
<tr>
<td>71440311</td>
<td>GENESIS II MODIFIED PATELLAR REAMER GUIDE B</td>
</tr>
<tr>
<td>71440324</td>
<td>GENESIS II PATELLAR REAMER SHAFT C</td>
</tr>
<tr>
<td>71440326</td>
<td>GENESIS II PATELLAR DEPTH STOP D</td>
</tr>
<tr>
<td>71440328</td>
<td>GENESIS II BICONVEX DEPTH GAUGE E</td>
</tr>
<tr>
<td>71440330</td>
<td>GENESIS II RESURFACING DEPTH GAUGE F</td>
</tr>
<tr>
<td>71440342</td>
<td>GENESIS II 29mm RESURFACE REAMER G</td>
</tr>
<tr>
<td>71440344</td>
<td>GENESIS II 32mm RESURFACE REAMER H</td>
</tr>
<tr>
<td>71440346</td>
<td>GENESIS II 35mm RESURFACE REAMER I</td>
</tr>
<tr>
<td>71440348</td>
<td>GENESIS II 26mm RESURFACE REAMER J</td>
</tr>
<tr>
<td>71440510</td>
<td>GENESIS II SERRATED PATELLAR REAMER COLLET 23mm K</td>
</tr>
<tr>
<td>71440512</td>
<td>GENESIS II SERRATED PATELLAR REAMER COLLET 26mm L</td>
</tr>
<tr>
<td>71440514</td>
<td>GENESIS II SERRATED PATELLAR REAMER COLLET 29mm M</td>
</tr>
<tr>
<td>71440516</td>
<td>GENESIS II SERRATED PATELLAR REAMER COLLET 32mm N</td>
</tr>
<tr>
<td>71440518</td>
<td>GENESIS II SERRATED PATELLAR REAMER COLLET 35mm O</td>
</tr>
<tr>
<td>71440634</td>
<td>GENESIS II MODIFIED BICONVEX PATELLAR REAMER 23mm P</td>
</tr>
<tr>
<td>71440636</td>
<td>GENESIS II MODIFIED BICONVEX PATELLAR REAMER 26mm Q</td>
</tr>
<tr>
<td>71440638</td>
<td>GENESIS II MODIFIED BICONVEX PATELLAR REAMER 29mm R</td>
</tr>
<tr>
<td>71440640</td>
<td>GENESIS II MODIFIED BICONVEX PATELLAR REAMER 32mm S</td>
</tr>
<tr>
<td>74010401</td>
<td>JOURNEY RESURFACING PEG DRILL T</td>
</tr>
<tr>
<td>74010426</td>
<td>JOURNEY RESURFACING DRILL GUIDE 26mm U</td>
</tr>
<tr>
<td>74010429</td>
<td>JOURNEY RESURFACING DRILL GUIDE 29mm V</td>
</tr>
<tr>
<td>74010432</td>
<td>JOURNEY RESURFACING DRILL GUIDE 32mm W</td>
</tr>
<tr>
<td>74010435</td>
<td>JOURNEY RESURFACING DRILL GUIDE 35mm X</td>
</tr>
<tr>
<td>74019801</td>
<td>JOURNEY PATELLA CEMENT CLAMP Y</td>
</tr>
<tr>
<td>74034623</td>
<td>JOURNEY PATELLA TRIAL BICONVEX 23mm STD Z</td>
</tr>
<tr>
<td>74034626</td>
<td>JOURNEY PATELLA TRIAL BICONVEX 26mm STD AA</td>
</tr>
<tr>
<td>74034629</td>
<td>JOURNEY PATELLA TRIAL BICONVEX 29mm STD BB</td>
</tr>
<tr>
<td>74034632</td>
<td>JOURNEY PATELLA TRIAL BICONVEX 32mm STD CC</td>
</tr>
<tr>
<td>74034826</td>
<td>JOURNEY PATELLA TRIAL RESURFACING 26mm STD DD</td>
</tr>
<tr>
<td>74034829</td>
<td>JOURNEY PATELLA TRIAL RESURFACING 29mm STD EE</td>
</tr>
<tr>
<td>74034832</td>
<td>JOURNEY PATELLA TRIAL RESURFACING 32mm STD FF</td>
</tr>
<tr>
<td>74034835</td>
<td>JOURNEY PATELLA TRIAL RESURFACING 35mm STD GG</td>
</tr>
</tbody>
</table>
7401-0100 JOURNEY® II Outlier Size 10 Tray

<table>
<thead>
<tr>
<th>Catalog Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>74012410</td>
<td>JOURNEY DCF AP FEMORAL CUTTING BLOCK SIZE 10 A</td>
</tr>
<tr>
<td>7403150</td>
<td>JOURNEY II TOTAL KNEE FEMORAL TRIAL RIGHT SIZE 10 B</td>
</tr>
<tr>
<td>7403160</td>
<td>JOURNEY II TOTAL KNEE FEMORAL TRIAL LEFT SIZE 10 C</td>
</tr>
<tr>
<td>7403360</td>
<td>JOURNEY II CR FEMORAL NOTCH TRIAL RIGHT SIZE 10 D</td>
</tr>
<tr>
<td>7403370</td>
<td>JOURNEY II CR FEMORAL NOTCH TRIAL LEFT SIZE 10 E</td>
</tr>
<tr>
<td>74032130</td>
<td>JOURNEY II BCS CAM TRIAL SIZE 10 RIGHT F</td>
</tr>
<tr>
<td>74032140</td>
<td>JOURNEY II BCS CAM TRIAL SIZE 10 LEFT G</td>
</tr>
</tbody>
</table>

7401-0086 JOURNEY II BCS Constrained Tibia Size 1-2 Left Tray

<table>
<thead>
<tr>
<th>Catalog Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>71449991</td>
<td>GENESIS® II NON-POROUS FIN-STEM PUNCH SIZE 1-2 A</td>
</tr>
<tr>
<td>71430161</td>
<td>GENESIS II STEMLESS TIBIAL TRIAL SIZE 1 LEFT B</td>
</tr>
<tr>
<td>71430163</td>
<td>GENESIS II STEMLESS TIBIAL TRIAL SIZE 2 LEFT C</td>
</tr>
<tr>
<td>74033614</td>
<td>UNIVERSAL INSERT SPACER SIZE 1-2 13mm D</td>
</tr>
<tr>
<td>74033615</td>
<td>UNIVERSAL INSERT SPACER SIZE 1-2 15mm E</td>
</tr>
<tr>
<td>74033616</td>
<td>UNIVERSAL INSERT SPACER SIZE 1-2 18mm F</td>
</tr>
<tr>
<td>74033617</td>
<td>UNIVERSAL INSERT SPACER SIZE 1-2 21mm G</td>
</tr>
<tr>
<td>74034221</td>
<td>JOURNEY II BCS CONSTRAINED INSERT TRIAL SIZE 1-2 9mm LT H</td>
</tr>
<tr>
<td>74034222</td>
<td>JOURNEY II BCS CONSTRAINED INSERT TRIAL SIZE 1-2 10mm LT I</td>
</tr>
<tr>
<td>74034224</td>
<td>JOURNEY II BCS CONSTRAINED INSERT TRIAL SIZE 1-2 11mm LT J</td>
</tr>
<tr>
<td>74034225</td>
<td>JOURNEY II BCS CONSTRAINED INSERT TRIAL SIZE 1-2 12mm LT K</td>
</tr>
<tr>
<td>74035221</td>
<td>JOURNEY II BCS ARTICULAR INSERT TRIAL SIZE 1-2 9mm LT L</td>
</tr>
<tr>
<td>74035222</td>
<td>JOURNEY II BCS ARTICULAR INSERT TRIAL SIZE 1-2 10mm LT M</td>
</tr>
<tr>
<td>74035223</td>
<td>JOURNEY II BCS ARTICULAR INSERT TRIAL SIZE 1-2 11mm LT N</td>
</tr>
<tr>
<td>74035224</td>
<td>JOURNEY II BCS ARTICULAR INSERT TRIAL SIZE 1-2 12mm LT O</td>
</tr>
</tbody>
</table>

7401-0087 JOURNEY II BCS Constrained Tibia Size 1-2 Right Tray

<table>
<thead>
<tr>
<th>Catalog Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>71449991</td>
<td>GENESIS II NON-POROUS FIN-STEM PUNCH SIZE 1-2 A</td>
</tr>
<tr>
<td>71430177</td>
<td>GENESIS II STEMLESS TIBIAL TRIAL SIZE 1 RIGHT B</td>
</tr>
<tr>
<td>71430179</td>
<td>GENESIS II STEMLESS TIBIAL TRIAL SIZE 2 RIGHT C</td>
</tr>
<tr>
<td>74033614</td>
<td>UNIVERSAL INSERT SPACER SIZE 1-2 13mm D</td>
</tr>
<tr>
<td>74033615</td>
<td>UNIVERSAL INSERT SPACER SIZE 1-2 15mm E</td>
</tr>
<tr>
<td>74033616</td>
<td>UNIVERSAL INSERT SPACER SIZE 1-2 18mm F</td>
</tr>
<tr>
<td>74033617</td>
<td>UNIVERSAL INSERT SPACER SIZE 1-2 21mm G</td>
</tr>
<tr>
<td>74034211</td>
<td>JOURNEY II BCS CONSTRAINED INSERT TRIAL SIZE 1-2 9mm RT H</td>
</tr>
<tr>
<td>74034212</td>
<td>JOURNEY II BCS CONSTRAINED INSERT TRIAL SIZE 1-2 10mm RT I</td>
</tr>
<tr>
<td>74034213</td>
<td>JOURNEY II BCS CONSTRAINED INSERT TRIAL SIZE 1-2 11mm RT J</td>
</tr>
<tr>
<td>74034214</td>
<td>JOURNEY II BCS CONSTRAINED INSERT TRIAL SIZE 1-2 12mm RT K</td>
</tr>
<tr>
<td>74035211</td>
<td>JOURNEY II BCS ARTICULAR INSERT TRIAL SIZE 1-2 9mm RT L</td>
</tr>
<tr>
<td>74035212</td>
<td>JOURNEY II BCS ARTICULAR INSERT TRIAL SIZE 1-2 10mm RT M</td>
</tr>
<tr>
<td>74035213</td>
<td>JOURNEY II BCS ARTICULAR INSERT TRIAL SIZE 1-2 11mm RT N</td>
</tr>
<tr>
<td>74035214</td>
<td>JOURNEY II BCS ARTICULAR INSERT TRIAL SIZE 1-2 12mm RT O</td>
</tr>
</tbody>
</table>
74010076 JOURNEY™ II CR DD Tibia Size 1-2 Left Tray
Catalog Item Description
74033614 Universal Insert Spacer Size 1-2 13mm
74033615 Universal Insert Spacer Size 1-2 15mm
74033616 Universal Insert Spacer Size 1-2 18mm
74035721 JOURNEY II CR Insert Trial Deep Dished Left Sz 1-2 9mm
74035722 JOURNEY II CR Insert Trial Deep Dished Left Sz 1-2 10mm
74035723 JOURNEY II CR Insert Trial Deep Dished Left Sz 1-2 11mm
74035724 JOURNEY II CR Insert Trial Deep Dished Left Sz 1-2 12mm

74010077 JOURNEY™ II CR DD Tibia Size 1-2 Right Tray
Catalog Item Description
74033614 Universal Insert Spacer Size 1-2 13mm
74033615 Universal Insert Spacer Size 1-2 15mm
74033616 Universal Insert Spacer Size 1-2 18mm
74035721 JOURNEY II CR Insert Trial Deep Dished Right Sz 1-2 9mm
74035722 JOURNEY II CR Insert Trial Deep Dished Right Sz 1-2 10mm
74035723 JOURNEY II CR Insert Trial Deep Dished Right Sz 1-2 11mm
74035724 JOURNEY II CR Insert Trial Deep Dished Right Sz 1-2 12mm

74010078 JOURNEY™ II CR DD Tibia Size 3-4 Left Tray
Catalog Item Description
74033634 Universal Insert Spacer Size 3-4 13mm
74033635 Universal Insert Spacer Size 3-4 15mm
74033636 Universal Insert Spacer Size 3-4 18mm
74035741 JOURNEY II CR Insert Trial Deep Dished Left Sz 3-4 9mm
74035742 JOURNEY II CR Insert Trial Deep Dished Left Sz 3-4 10mm
74035743 JOURNEY II CR Insert Trial Deep Dished Left Sz 3-4 11mm
74035744 JOURNEY II CR Insert Trial Deep Dished Left Sz 3-4 12mm
74010079 JOURNEY™ II CR DD Tibia Size 3-4 Right Tray

Catalog Item	Description
71449993 | GENESIS™ II Non-Porous Fin-Stem Punch Size 3-4
71430181 | GENESIS II Stemless Tibial Trial Size 3 Right
71430183 | GENESIS II Stemless Tibial Trial Size 4 Right
74033630 | JOURNEY™ II CR Insert Trial Right Size 3-4 12mm
74033631 | JOURNEY™ II CR Insert Trial Right Size 3-4 9mm
74033632 | JOURNEY™ II CR Insert Trial Right Size 3-4 10mm
74033633 | JOURNEY™ II CR Insert Trial Right Size 3-4 11mm
74033634 | Universal Insert Spacer Size 3-4 13mm
74033635 | Universal Insert Spacer Size 3-4 15mm
74033636 | Universal Insert Spacer Size 3-4 18mm
74033731 | JOURNEY™ II Insert Trial Deep Dished Right Sz 3-4 9mm
74033732 | JOURNEY™ II Insert Trial Deep Dished Right Sz 3-4 10mm
74033733 | JOURNEY™ II Insert Trial Deep Dished Right Sz 3-4 11mm
74033734 | JOURNEY™ II Insert Trial Deep Dished Right Sz 3-4 12mm

74010080 JOURNEY™ II CR DD Tibia Size 5-6 Left Tray

Catalog Item	Description
71449995 | GENESIS™ II Non-Porous Fin-Stem Punch Size 5-6
71430169 | GENESIS II Stemless Tibial Trial Size 5 Left
71430171 | GENESIS II Stemless Tibial Trial Size 6 Left
74033654 | Universal Insert Spacer Size 5-6 13mm
74033655 | Universal Insert Spacer Size 5-6 15mm
74033656 | Universal Insert Spacer Size 5-6 18mm
74033661 | JOURNEY™ II CR Insert Trial Left Size 5-6 9mm
74033662 | JOURNEY™ II CR Insert Trial Left Size 5-6 10mm
74033663 | JOURNEY™ II CR Insert Trial Left Size 5-6 11mm
74033664 | JOURNEY™ II CR Insert Trial Left Size 5-6 12mm
74033761 | JOURNEY™ II Insert Trial Deep Dished Left Size 5-6 9mm
74033762 | JOURNEY™ II Insert Trial Deep Dished Left Size 5-6 10mm
74033763 | JOURNEY™ II Insert Trial Deep Dished Left Size 5-6 11mm
74033764 | JOURNEY™ II Insert Trial Deep Dished Left Size 5-6 12mm

74010081 JOURNEY™ II CR DD Tibia Size 5-6 Right Tray

Catalog Item	Description
71449995 | GENESIS™ II Non-Porous Fin-Stem Punch Size 5-6
71430185 | GENESIS II Stemless Tibial Trial Size 5 Right
71430187 | GENESIS II Stemless Tibial Trial Size 6 Right
74033650 | JOURNEY™ II CR Insert Trial Right Size 5-6 12mm
74033651 | JOURNEY™ II CR Insert Trial Right Size 5-6 9mm
74033652 | JOURNEY™ II CR Insert Trial Right Size 5-6 10mm
74033653 | JOURNEY™ II CR Insert Trial Right Size 5-6 11mm
74033654 | Universal Insert Spacer Size 5-6 13mm
74066355 | Universal Insert Spacer Size 5-6 15mm
74033656 | Universal Insert Spacer Size 5-6 18mm
74033751 | JOURNEY™ II Insert Trial Deep Dished Right Sz 5-6 9mm
74033752 | JOURNEY™ II Insert Trial Deep Dished Right Sz 5-6 10mm
74033753 | JOURNEY™ II Insert Trial Deep Dished Right Sz 5-6 11mm
74033754 | JOURNEY™ II Insert Trial Deep Dished Right Sz 5-6 12mm
74010082 JOURNEY II CR DD Tibia Size 7-8 Left Tray
Catalog Item Description
71449997 GENESIS II Non-Porous Fin-Stem Punch Size 7-8
71430173 GENESIS II Stemless Tibial Trial Size 7 Left
71430175 GENESIS II Stemless Tibial Trial Size 8 Left
74033674 Universal Insert Spacer Size 7-8 13mm
74033675 Universal Insert Spacer Size 7-8 15mm
74033676 Universal Insert Spacer Size 7-8 18mm
74033681 JOURNEY II CR Insert Trial Left Size 7-8 9mm
74033682 JOURNEY II CR Insert Trial Left Size 7-8 10mm
74033683 JOURNEY II CR Insert Trial Left Size 7-8 11mm
74033684 JOURNEY II CR Insert Trial Left Size 7-8 12mm
74035781 JOURNEY II Insert Trial Deep Dished Left Size 7-8 9mm
74035782 JOURNEY II Insert Trial Deep Dished Left Size 7-8 10mm
74035783 JOURNEY II Insert Trial Deep Dished Left Size 7-8 11mm
74035784 JOURNEY II Insert Trial Deep Dished Left Size 7-8 12mm

74010083 JOURNEY II CR DD Tibia Size 7-8 Right Tray
Catalog Item Description
71449997 GENESIS II Non-Porous Fin-Stem Punch Size 7-8
71430189 GENESIS II Stemless Tibial Trial Size 7 Right
71430191 GENESIS II Stemless Tibial Trial Size 8 Right
74033670 JOURNEY II CR Insert Trial Right Size 7-8 12mm
74033671 JOURNEY II CR Insert Trial Right Size 7-8 9mm
74033672 JOURNEY II CR Insert Trial Right Size 7-8 10mm
74033673 JOURNEY II CR Insert Trial Right Size 7-8 11mm
74033674 Universal Insert Spacer Size 7-8 13mm
74033675 Universal Insert Spacer Size 7-8 15mm
74033676 Universal Insert Spacer Size 7-8 18mm
74035771 JOURNEY II Insert Trial Deep Dished Right Size 7-8 9mm
74035772 JOURNEY II Insert Trial Deep Dished Right Size 7-8 10mm
74035773 JOURNEY II Insert Trial Deep Dished Right Size 7-8 11mm
74035774 JOURNEY II Insert Trial Deep Dished Right Size 7-8 12mm