VISIONAIRE®: More efficient for total knee arthroplasty (TKA) than conventional techniques

Purpose
To systematically evaluate and summarise the current evidence on the clinical performance of VISIONAIRE (Smith & Nephew, Memphis, TN, USA) in TKA.

Systematic literature review

- **59** studies reporting on VISIONAIRE
- **19** eligible studies with outcomes of interest

Results of meta-analysis
Compared with conventional instrumentation, VISIONAIRE:

- Reduced the length of hospital stay by **10.2%** (0.46 days; p=0.0023)
- Reduced the odds of an outlier in the mechanical axis by **46%** (p<0.0001)
- Less likely to require a blood transfusion by **53%** (p=0.01)
- Led to more efficient operations, with reductions in:
 - Time in the operating room (**9.6%** shorter; p=0.0004)
 - Operating room turnover time (**42%** shorter; p=0.022)
 - Tourniquet time (**20.2%** shorter; p=0.0563)

Conclusion
VISIONAIRE patient-matched cutting guides have been extensively published on in the literature. Results from this meta-analysis show that their use leads to improvements in mechanical axis accuracy, efficiency in surgical procedures and patient outcomes in comparison with conventional techniques.
Methods

Literature search

A thorough search of the peer-reviewed literature was conducted. Please refer to Appendices for further detail on the eligibility criteria and literature search.

The search strategy was as follows:

<table>
<thead>
<tr>
<th>Inclusion criteria:</th>
<th>Exclusion criteria:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• English-language paper</td>
<td>• Non-clinical study</td>
</tr>
<tr>
<td>• Compared VISIONAIRE™ to conventional instrumentation</td>
<td>• Repeats data set from another study</td>
</tr>
<tr>
<td>• Reported on outcomes of interest</td>
<td></td>
</tr>
</tbody>
</table>

Inclusion criteria:
- English-language paper
- Compared VISIONAIRE™ to conventional instrumentation
- Reported on outcomes of interest

Exclusion criteria:
- Non-clinical study
- Repeats data set from another study

Figure 1. Search strategy

Characteristics of 19 eligible studies are summarised in Figure 2, with further details found in Table 1.

Figure 2. Study characteristics

Mean age:
- VISIONAIRE: 65.1 years
- Conventional: 66.3 years

Mean percentage of male patients:
- VISIONAIRE: 43.3%
- Conventional: 45.4%

Mean sample size:
- VISIONAIRE: 63.5 knees
- Conventional: 51.6 knees

Total number of knees:
- VISIONAIRE: 1,206 knees
- Conventional: 981 knees
Results

All 19 studies were included in a meta-analysis, the details of which are provided in the Appendices. This meta-analysis offered results for the following outcomes:

Patient outcomes

Length of hospital stay

- Four studies reported on length of hospital stay (only unilateral TKA studies were included in order to not over-estimate any treatment effect)\(^1\)\(^-\)\(^4\)
 - VISIONAIRE patients spent 0.46 fewer days in hospital than conventional techniques (\(p=0.0023\); Figure 3)
 - This equates to 10.2% less time spent in hospital

Post-operative complications

- Four studies reported on post-operative complications\(^2\)\(^-\)\(^7\)
 - There was a 34% reduction in odds of post-operative complications with VISIONAIRE in comparison to conventional techniques, but this did not reach significance (\(p=0.195\))

Blood loss

- Six studies reported on the odds of requiring a blood transfusion with VISIONAIRE or conventional techniques\(^2\)\(^-\)\(^4\),\(^8\),\(^15\),\(^16\)
 - The odds of requiring a blood transfusion were 53% lower with VISIONAIRE compared with conventional techniques (OR, 0.47; \(p=0.01\); Figure 4)

Accuracy

Mechanical axis outliers

- Ten studies reported on the mechanical axis outliers after TKA with VISIONAIRE or a conventional technique\(^3\)\(^-\)\(^5\),\(^8\),\(^15\)
 - Meta-analysis revealed significantly reduced odds of outliers with VISIONAIRE (13%) than with conventional techniques (21%); odds ratio (OR), 0.55; \(p=0.0001\); Figure 5
 - No significant differences were found for the overall coronal component alignment (OR, 0.61), overall sagittal component alignment (OR, 1.29) or femoral component rotation alignment (OR, 0.41)

Efficiency

Only data for unilateral TKAs were included in order to not overestimate any treatment effect.
Results (cont’d)

Operating room time

- Ten studies reported on the length of time spent in the operating room1-2,5,6,11,12,15-17.
 - VISIONAIRE\textregistered was on average 7.5 minutes quicker than conventional techniques (\(p=0.0004\)), resulting in 9.6\% less time than conventional techniques (Figure 6).

Operating room turnover time

- One study reported on operating room turnover time16.
 - Turnover time between cases was 42\% shorter with VISIONAIRE (6.4 minutes shorter; \(p=0.022\)) than conventional techniques (Figure 7).

Tourniquet time

- Four studies reported on tourniquet time2,12,16,17.
 - Mean difference in tourniquet time of 13.52 minutes between VISIONAIRE and conventional techniques.
 - VISIONAIRE took approximately 20.2\% less time with tourniquet (13.52 minutes less time; \(p=0.0563\)) than conventional techniques (Figure 8).

Please refer to Appendices for further information on the study results.
Discussion

- VISIONAIRE™ has been extensively published on, with over 50 clinical papers describing its use.

- In clinical use, TKAs performed using VISIONAIRE have improved mechanical axis alignment accuracy compared with conventional instrumentation\(^3,5,8-15\).

- VISIONAIRE optimises the operating room compared with conventional instrumentation:
 - 10% reduction in overall operating room time\(^1,3,5,6,11,12,15,17\).
 - 20% reduction in tourniquet time\(^2,12,16,17\).
 - 40% reduction in operating room turn-over time\(^16\).

- VISIONAIRE improves patient outcomes:
 - Patients with VISIONAIRE TKAs have a 10% shorter stay in hospital\(^1-4\).
 - Although statistically insignificant the reduction in post-operative complications may be a clinically important finding, suggesting that more data collection is needed in order to determine a significant difference or trend.
 - VISIONAIRE TKA operations result in less blood loss compared to conventional instrumentation TKAs\(^2-4,8,15,16\).

Conclusion

VISIONAIRE-patient matched cutting guides have been extensively published on in the literature. Results from this meta-analysis show that its use leads to improvements in mechanical axis accuracy, efficiency in surgical procedures and patient outcomes in comparison with conventional techniques.
<table>
<thead>
<tr>
<th>Study, year</th>
<th>Level I: Randomised controlled trials</th>
<th>Level II: Prospective, comparative</th>
<th>Level III: Retrospective, comparative</th>
<th>Level IV: Case series</th>
<th>Sample size (knees)</th>
<th>Mean age</th>
<th>% male</th>
<th>Reason for TKA</th>
<th>Knee implant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abane et al, 2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>59 (VISIONAIRE)</td>
<td>67.8</td>
<td>58.6</td>
<td>OA</td>
<td>GENESIS II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>67 (conventional)</td>
<td>70.4</td>
<td>61.4</td>
<td>OA</td>
<td>GENESIS II</td>
</tr>
<tr>
<td>Huijbregts et al, 2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>69 (VISIONAIRE)</td>
<td>66.7</td>
<td>42</td>
<td>RA/OA</td>
<td>GENESIS II/LEGION II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64 (conventional)</td>
<td>69</td>
<td>50</td>
<td>RA/OA</td>
<td>GENESIS II/LEGION</td>
</tr>
<tr>
<td>Kosse et al, 2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21 (VISIONAIRE)</td>
<td>62.7</td>
<td>38.1</td>
<td>OA</td>
<td>GENESIS II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21 (conventional)</td>
<td>63.4</td>
<td>57.1</td>
<td>OA</td>
<td>GENESIS II</td>
</tr>
<tr>
<td>Noble et al, 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15 (VISIONAIRE)</td>
<td>65.4</td>
<td>53.3</td>
<td>NR</td>
<td>LEGION</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14 (conventional)</td>
<td>68</td>
<td>42.9</td>
<td>NR</td>
<td>LEGION</td>
</tr>
<tr>
<td>Pfitzner et al, 2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 (VISIONAIRE)</td>
<td>65</td>
<td>46.7</td>
<td>OA</td>
<td>JOURNEY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 (conventional)</td>
<td>64</td>
<td>43.3</td>
<td>OA</td>
<td>JOURNEY</td>
</tr>
<tr>
<td>Tammachote et al, 2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>54 (VISIONAIRE)</td>
<td>72</td>
<td>22.2</td>
<td>OA/RA</td>
<td>GENESIS II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>54 (conventional)</td>
<td>72</td>
<td>27.8</td>
<td>OA/RA</td>
<td>GENESIS II</td>
</tr>
<tr>
<td>Vide et al, 2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>47 (VISIONAIRE)</td>
<td>67.8</td>
<td>31.9</td>
<td>OA</td>
<td>Cemented fixed-bearing, cruciate-retaining implant</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48 (conventional)</td>
<td>69.3</td>
<td>31.3</td>
<td>OA</td>
<td>Cemented fixed-bearing, cruciate-retaining implant</td>
</tr>
<tr>
<td>Vundelinckx et al, 2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31 (VISIONAIRE)</td>
<td>64.7</td>
<td>48.4</td>
<td>NR</td>
<td>GENESIS II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31 (conventional)</td>
<td>68.2</td>
<td>35.5</td>
<td>NR</td>
<td>GENESIS II</td>
</tr>
<tr>
<td>Bali et al, 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6 (VISIONAIRE)</td>
<td>67.8</td>
<td>NR</td>
<td>OA</td>
<td>GENESIS II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6 (conventional)</td>
<td>67.8</td>
<td>NR</td>
<td>OA</td>
<td>GENESIS II</td>
</tr>
<tr>
<td>Moubarak and Brillhaut, 2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57 (VISIONAIRE)</td>
<td>NR</td>
<td>NR</td>
<td>No specific indication</td>
<td>GENESIS II/LEGION</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11 (conventional)</td>
<td>NR</td>
<td>NR</td>
<td>No specific indication</td>
<td>GENESIS II/LEGION</td>
</tr>
<tr>
<td>Nankivell et al, 2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41 (VISIONAIRE)</td>
<td>70.8</td>
<td>17.5</td>
<td>OA/RA/post-traumatic arthritis</td>
<td>GENESIS II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45 (conventional)</td>
<td>71.4</td>
<td>40</td>
<td>OA/RA/post-traumatic arthritis</td>
<td>GENESIS II</td>
</tr>
<tr>
<td>Predescu et al, 2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40 (VISIONAIRE)</td>
<td>59.6</td>
<td>35</td>
<td>NR</td>
<td>GENESIS II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40 (conventional)</td>
<td>62.4</td>
<td>30</td>
<td>NR</td>
<td>GENESIS II</td>
</tr>
<tr>
<td>Study, year</td>
<td>Sample size (knees)</td>
<td>Mean age</td>
<td>% male</td>
<td>Reason for TKA</td>
<td>Knee implant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------------------</td>
<td>----------</td>
<td>--------</td>
<td>----------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barke et al, 2013<sup>1</sup></td>
<td>39 (VISIONAIRE<sup>®</sup>)</td>
<td>64</td>
<td>51.3</td>
<td>NR</td>
<td>GENESIS™ II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50 (conventional)</td>
<td>72.7</td>
<td>50</td>
<td>NR</td>
<td>GENESIS II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daniilidis and Tibesku, 2014<sup>11</sup></td>
<td>170 (VISIONAIRE)</td>
<td>66.1</td>
<td>63.3</td>
<td>OA</td>
<td>GENESIS II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>160 (conventional)</td>
<td>65</td>
<td>50.6</td>
<td>OA</td>
<td>GENESIS II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heyse and Tibesku, 2014<sup>19</sup></td>
<td>46 (VISIONAIRE)</td>
<td>65.8</td>
<td>55.3</td>
<td>Degenerative joint disease</td>
<td>GENESIS II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>48 (conventional)</td>
<td>65.8</td>
<td>55.3</td>
<td>Degenerative joint disease</td>
<td>GENESIS II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marimuthu et al, 2014<sup>15</sup></td>
<td>115 (VISIONAIRE)</td>
<td>68.3</td>
<td>NR</td>
<td>NR</td>
<td>LEGION™</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>185 (conventional)</td>
<td>67.6</td>
<td>NR</td>
<td>NR</td>
<td>LEGION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myers et al, 2014<sup>2</sup></td>
<td>30 (VISIONAIRE)</td>
<td>57</td>
<td>57.1</td>
<td>NR</td>
<td>LEGION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29 (conventional)</td>
<td>55.4</td>
<td>45.8</td>
<td>NR</td>
<td>LEGION/JOURNEY™</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rathod et al, 2015<sup>17</sup></td>
<td>30 (VISIONAIRE)</td>
<td>57</td>
<td>40</td>
<td>NR</td>
<td>LEGION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28 (conventional)</td>
<td>59</td>
<td>42.9</td>
<td>NR</td>
<td>LEGION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DeHaan et al, 2014<sup>16</sup></td>
<td>306 (VISIONAIRE)</td>
<td>62.8</td>
<td>31.8</td>
<td>Degenerative joint disease</td>
<td>LEGION/JOURNEY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50 (conventional)</td>
<td>62.2</td>
<td>62.2</td>
<td>Degenerative joint disease</td>
<td>LEGION/JOURNEY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations
NR: not reported; OA: osteoarthritis; RA: rheumatoid arthritis; TKA: total knee arthroplasty
References

Disclaimer Great care has been taken to maintain the accuracy of the information contained in this publication. However, neither Smith & Nephew, nor the authors can be held responsible for errors or any consequences arising from the use of the information contained in this publication. The statements or opinions contained in editorials and articles in this journal are solely those of the authors thereof and not of Smith & Nephew. The products, procedures, and therapies described are only to be applied by certified and trained medical professionals in environments specially designed for such procedures. No suggested test or procedure should be carried out unless, in the reader’s professional judgment, its risk is justified. Because of rapid advances in the medical sciences, we recommend that independent verification of diagnosis, drugs dosages, and operating methods should be made before any action is taken. Although all advertising material is expected to conform to ethical (medical) standards, inclusion in this publication does not constitute a guarantee or endorsement of the quality or value of such product or of the claims made of it by its manufacturer. Some of the products, names, instruments, treatments, logos, designs, etc. referred to in this journal are also protected by patents and trademarks or by other intellectual property protection laws even though specific reference to this fact is not always made in the text. Therefore, the appearance of a name, instrument, etc. without designation as proprietary is not to be construed as a representation by the publisher that it is in the public domain. This publication, including all parts thereof, is legally protected by copyright. Any use, exploitation or commercialisation outside the narrow limits of copyrights legislation, without the publisher’s consent, is illegal and liable to prosecution. This applies in particular to photostat reproduction, copying, scanning or duplication of any kind, translating, preparation of microforms and electronic data processing and storage. Institutions’ subscriptions allow to reproduce tables of content or prepare lists of articles including abstracts for internal circulation within the institutions concerned. Permission of the publisher is required for resale or distribution outside the institutions. Permission of the publisher is required for all other derivative works, including compilations and translations. Permission of the publisher is required to store or use electronically any material contained in this journal, including any article or part of an article. For inquiries contact the publisher at the address indicated.